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Abstract:This paper proposes an approach for 3D data reduction based on estimating the surface normal vectors for handling the 

amount of data acquired by laser scanning. The data points are partitioned into cells based on their x, y, and z-axis positions.For 

normal vector computation, wefit the point data of each cell to implicit general quadric. Then, the shortest distance is directly 

estimated by intersecting the implicit surface with a line passing through the given point according to the estimated orthogonal 

orientation, which is necessary for normal vectors computation. The points in each cell are assigned their corresponding estimated 

normal vectors. For each cell, the points are reduced according to the normal vectorsdirection. The median point is chosen as 

representative point of the cell if the assigned normals point to the same direction, otherwise the average point is selected. The 

performance of the proposed method is illustrated using a range of point clouds scanned from typical engineering surfaces. Keyword: 

Normal vector, surface fitting, 3D data reduction 

 

1. INTRODUCTION 

Reverse engineering refers to the process of creating engineering design data from existing physical parts by acquiring 

its surface data using a scanning or measurement device. Improved data acquisition methods, especially using laser 

scanning, now make it possible to process scattered point clouds in three dimensionalspaces with high accuracy. It has 

now become a realistic expectation to generate exact and continuous models, which can be directly transferred to, and 

utilized by CAD/CAM systems. The process of reverse engineering can be divided into four phases: data acquisition, 

data preprocessing, segmentation and surface fitting [1-5].  

This paper focuses on the data preprocessing phase and in particular in reducing the amount of data for different 

activities: reverse engineering [1], visualization [2] and object recognition [3]. We present a 3D data reduction 

technique for managing the amount of data acquired by laser scanning. We used a binary search data structure to 

subdivide the point data into cells.  The normal vectors for each cell are estimated by fitting the point datatoimplicit 

general quadricbased on finding the set of parameters that minimize some distance measures between the given set of 

points and the fitted surface. For each cell,thenormalsareassigned to points.The points ateach cell are reduced according 

to normal vectors, i.ewe compute the angle between normal vector and arbitrary vector. The median point  and the 

points with smallest angles than a prescribed value are chosen as the representative points of the cell.   

The rest of the paper is organized as follows. Section 2 describes the related work. The proposed technique is presented 

in section 3. Section 4 gives experimental results.Our conclusion is presented in section 5. 

 

2. RELATED WORK 

After data acquisition, pre-processing of the data set is required for noise filtering, establishing connectivity between 

adjacent points, reducing redundancy and merging point clouds taken from multiple views. A major problem in this 

phase is that certain types of scanner produce vast amounts of data, the processing of which presents serious problem. 

Rather than processing all of these data at every stage of reconstruction process, an alternative is to use a strategy in 

which the data is initially reduced, then a model is constructed from this restricted set of data, The full set of data is 

only used to improve this preliminary model (if necessary). The challenge is to maintain sufficient information from 

which to calculate surface reliably without distorting those surfaces or their boundaries [6-7]. 

Recently, some researchers have proposed several techniques to manage the amount of points acquired by laser 

scanners [7-20]. These techniquesare grouped into two categories, the discrete space such as Fourier or wavelets 

transform, and real space image.  

 



Hussein Abo-Surrah et al, Journal of Global Research in Computer Science, 5 (10), October 2014, 5-13 

© JGRCS 2010, All Rights Reserved                                                                                                                                                                             6      

                

 

The first category techniques include the discrete Fourier transform (DFT) introduced in [7] and extended in [6] and the 

discrete wavelet transform (DWT) introduced in [9]. Those techniques are used to reduce the redundant points in one 

dimension or two dimensions. Recently, Gongde [10] introduced a modification of the real discrete Fourier Transform 

and its inverse transform to filter the noise and to perform reduction on the data whilst preserving the trend of global 

moving of time series. The idea of Fourier Transform technique is to reduce the massive amount of data provided by the 

input device, or arising as a result of transmission of the image.  However, the discrete wavelet transform of a signal is 

calculated and the resultant wavelet coefficients are passed through a threshold testing. In this case, the coefficients that 

are smaller than a certain value are removed. Then the resultant coefficients are used to reconstruct the signal [9]. It is 

not the objective of this paper to work in this direction, the techniques presented in this category are practically difficult 

to be manipulated with very dense 3D data. 

 

The simplest approach of the second category techniques is the neighbourhood averaging in which a point is replaced 

by the average value of the points contained in some neighbourhood when a point is close to the average value, 

otherwise, we keep it unchanged. Thus, if we are near to some sort of edge, there will be a large change in points, and 

points on both sides of it will not be close to the average value [11]. In Martin technique [12], a neighbourhood around 

the point under consideration is used, but this time the point value is replaced by the median point in the 

neighbourhood. Their method used a uniform grid with a median filtering approach [12], which has been widely used in 

image processing. Their method, however, has drawbacks due to the use of the uniform size grids that can be 

insensitive in capturing a part shape. However, the weakness of this method is that deleting points from every cell 

without constraint, can distort the surface, especially when the cell belongs to the edge. Also, replacing one cell by one 

point may distort the surface or its boundary. 

 

There are data reduction methods for reducing the number of polygons in a polygon model, especially for models with 

triangular patches. The data points  for these models were not generated by laser scanners, but they were created for 

other purposes such as rendering and analysis. The authors [13-16] have also presented a method of data reduction for 

triangulation files based on an iterative triangle removal principle. As a measure of the reduction of file size, each 

triangulation is weighted according to the principal curvature estimates at its vertices and interior angles. The weakness 

of this method is that it takes a long time to generate triangulation and estimate its curvature. 

 

Filter-based methods that try to constrain the factor ratio of scanned data, have been presented for subsampling the data, 

including randomized sampling, uniform sampling, normal-space sampling and covariance sampling [17-18]. 

Randomized sampling selects points at random, uniform sampling draws equally distributed samples from the input 

point cloud. Normal space sampling, as proposed by Rusinkiewicz and Levoy, aims at constraining translational sliding 

of input meshes, generated from the point cloud [17]. Their algorithm tries to ensure that the normalsof the selected 

points uniformly populate the sphere of directions. Covariance sampling is proposed by Gelfand et al. [18] and extends 

the nomal space approach [19-20]. They identify whether a pair of meshes will be unstable in the iterative closest point 

(ICP) algorithms by estimating a covariance matrix from a sparse uniform sampling of the input. 

3. THE PROPOSED METHOD 

In this section, we present an overview of the proposed method. This method consists of foursteps. In the first step, data 

points are subdivided into cells based on their positions with respect to x, y, and z-axes, respectively. The second step is 

to fit the point data to implicit general quadric. In the third step, the surface normal is estimated. The procedure in the 

fourth step is used to reduce the data in each cell,in the normal vectors assigned to the points. For each cell, an arbitrary 

direction is selected and referred to as a reference direction. The angles between the reference direction and the normal 

vectors are estimated. According to the values of these angles, a median point is chosenas representative point of the 

cell, otherwise the average point is selected. Here, a non-uniform grid method is proposed in which the size of grids can 

be varied based on the local shape of the component. The size of a grid is defined automatically corresponding to a user 

defined threshold and it depends on the intended data reduction ratio for the given part shape. In the following, we shall 

describe these steps in more details. 

4. POINT DATA PARTITIONING 

Let the set of points which we want to handlebe put in an arbitrary array Pwith x, y and z directions. We used a binary 

search data structure to subdivide the point data as in Figure1.  The point data is subdivided into two cells,  each cell 

can be subdivided into two cells if needed.  We refer to the partitioning stage as levels, so the set of points is partitioned 

based on ℓ levels, levellevellevel ,...,, 10 . Partitioning these into
2,....,2,2 10

denotes the corresponding cells’ 

number respectively. This procedure is summarizedby the algorithm 1. 

Algorithm 1: 

1- k=1 

2- Sort the points in Pcorresponding to x-direction in an array 
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3- Partition the pointsin Pinto cells and put them in the sub-arrays Ak,k=1,..,2
k
 

4- Sort the points in Ak,k=1,..,2
k
corresponding to y-direction 

5- Partition the points in Akinto cells and put them into the sub-arrays Bk,k=1,..,2
k+1

 

6- Sort the points in Bk,k=1,..,2
k+1

corresponding to z-direction in an array 

7- Put
22,..,1, k

k kc to equal 0 

8- Partition the points Bk,k=1,..,2
k+1

Bk,k=1,..,2
k+1

into cells and put these it into sub-arrays Ck,k=1,..,2
k+2

 

9- Put ,2,..,1, 2k

k kA 22,..,1, k

k kB to equal 0, k=k+3 

10- Put
22,..,1, k

k kCP  

11- Stop if  the number of points in one array of  Ck,k=1,..,2
k+2 

is lesser than or equal 16 points 

12- End  

 

 

Figure1: The point data is subdivided into 2
3 
cells. 

 

5. SURFACE FITTING 

The method begins with a set of 3D points for each cell. It is assumed that the data has been pre-processed to remove 

gross outliers [21]. A variety of surface forms had been proposed including planar [22], quadratic or cubic [23-24] and 

parametric quadratic surfaces [21]. To treatingplanar [22] and quadratic or cubic [23] cases individually, the explicit 

general quadratic surface is proposed [25]. The method is stable and easy to implement, however it has limited 

geometric shape description. The general implicit quadratic surface,is represented by: 

01222222),( 987654

2

3

2

2

2

1 zbybxbyzbxzbxybzbybxbxbF  

The fitting process can be performed by the well-known least squares method as follows:

0)1222222(),,( 2

987654

2

3

2

2

2

1

1

iiiiiiiiiiii

N

i

zbybxbzybzxbyxbzbybxbzyxF  

For estimating the coefficients from  b1 to b9, we differntate the function F(x,y,z): 

0,0,0,0,0,0,0,0,0
987654321 b

F

b

F

b

F

b

F

b

F

b

F

b

F

b

F

b

F
 

which leads to the linear system: 
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Solving the linear system with, e.g., matlab we get the values of 987654321
,,,,,,,, bbbbbbbbb . 

6. SURFACE NORMAL ESTIMATION 

Estimation of surface normals is a fundamental task in many reverse engineering algorithms.  After performing the 

fittedsurface from points at each cell, we compute the orthogonal distance between a point p  and an implicit general 

quadric [26]: 

01222222),,,( 987654

2

3

2

2

2

1 zbybxbyzbxzbxybzbybxbzyxbF  

This can be formulated as first finding the closest point 
o

p on the surface. This point corresponds to the intersection of 

the surface with a line passing through p  and orthogonal to the surface at 
o

p ,
),,(

0 ooo cban
; thus, the orthogonal 

distance can be expressed as
00

npp  for some scalar : 
0

0

0

0

0

0

c

zz

b

yy

a

xx
ppp

 with 

0),,,( zyxbF , fits the data optimally in the sense of least squares.It consists in approximating the surface normal 

vector ),,(
0 ooo cban   at the intersection point

o
p  , by means of a vector ),,( hhh cbah  parallel to the 

tetrahedron height segment. 

The tetrahedron is defined by points: .0),,(and0),,(,0),,(, ppp zyxfzyxfzyxfp The estimation 

of the orthogonal distance could be easily obtained from the tetrahedron height segment. Since the fitted curve is 

defined by an implicit quadric equation .0),,,( zyxbf  the intersection point can be found by representing the 

tetrahedron height by means of a parametric equation uczzubyyuaxx hphphp ,, then by 

replacing parametric equation in the implicit quadric expression and by solving that quadric equation, the two values 

satisfying the implicit equation are found.The nearest one corresponding to the intersection of the tetrahedron height 

segment and the implicit quadric curve o
pp is the orthogonal distance estimation. 

Let r, s and t be the three intersections with quadric surface which create a triangular planer patch.  

Vectors trandrs  are contained in the plane and their cross product is orthogonal to the planer patch. In other 

words, it is parallel to the tetrahedron height segment ),,(
hhh

cbah  which is used as an estimation of the surface 

normal vector ),,(
0 ooo cban  at the intersection point

o
p . 
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7. 3D POINTS REDUCTION  

The points in each cell are assigned their corresponding estimated normal vectors : 1,...,i jn i


.  Since cells are 

treated independently, edges are preserved whilst the number of points is reduced.   

The angle criterion guarantees that the angle between the reference normal vector N


and the normal vectors of points 

: 1,...,i jn i


in one cell can determine geometric shape properties. If the anglesare smaller than a prescribed 

value ,then the points have different geometric propertiesand then the median point and the points with smallest angles 

than a prescribed value are chosenas representative point of the cell. This can reduce large data sets whilst maintaining 

the information and accuracy contained in the original data. This will be advantageous for surface reconstruction and 

hence for follow on activities, especially in the manufacturing process. 

The performance of 3D points reduction can be described in algorithm 2.   

 

Algorithm 2: 
1. Set j=1.  

2. Define N


on the arbitrary direction. 

3. Select normal vectors : 1,...,i jn i


 in cell Cj. 

4. Compute angles, i, between N


and in


. 

5. If i- m |< j, where  is a user defined value and m is the function corresponding the median point, 

the median point is chosen, else the average point is selected. 

6. Select corresponding original points.  

7. Remove residual points in Cj. 

8. j=j+1. 

9. Repeat step 3 through 7 until all the cells have been processed. 

10. Stop 

8. EXPERIMENTAL RESULTS   

To assess the performance of the proposed reduction algorithm, it is applied to simulated and actual scanned data. 

Before applying the reduction algorithm, the initial point cloud is pre-processed to remove any gross outliers. The 

thresholds for the reduction algorithm were fixed at =0.1. Simulated data sets are considered first, i.e. point clouds 

taken from analytic planar, spherical and cylindrical components to which a number of randomly distributed noise 

points are superimposed (1.0% of original data size). The level of noise is generally larger than those typically expected 

in real data (0.1%) so that the reduction method can be assessed in extreme cases. 

The performance of the reduction algorithm is assessed by fitting a surface to the data points pre- and post-reduction 

using standard least squares (LS) [27]. The expectation here is that if the method is performing well, the resulting LS fit 

should improve as the data is reduced.  The error metric is taken as the average of the orthogonal distances between the 

fitted surface and the points.The results of various degree reductions and the corresponding mean errors are given in 

Table 1.   

For example,cylinder part A was scanned giving 2676 points with a LS mean error=1.009. The point set was then 

reduced twice.  For reduction degree r=1, the resulting number of points was 1900, i.e. a reduction ratio of 29%, with a 

mean error=0.002376.  Degree reduction r=2 gave 570 points, reduction ratio 78% and mean error=0.002029. The 

results for all the test cases (Table 1) exhibit the same improved LS fit. This gives evidence that the proposed method 

reduces the point set whilst maintaining the integrity of the reduced point cloud. 

Figures 2(a)-5(a) show the original data sets and Figures 2(b)-5(b) and 5(c) the resulting reduced data sets for the 

analytical surfaces in Table 1.  In all cases the resulting reduced data sets retain enough data to describe the underlying 

analytic surface. 

Table 1.Scanned analytic surfaces with simulated noise. 

Surface 
Number 

of points 

Mean 

Error  

Reduction 

degree(r) 

Reduction 

Ratio(%) 
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Fig..2a.Planar data n=1654, Mean = 0.967. Fig..2b.Reduced set n = 805, Mean =0.00097. 

Fig..3b.Reduced set n = 753, Mean = 0.0087. 

Fig..3a.Cylindrical data n =1854, Mean =1.022. 

Fig..4a.Cylindrical data n = 2676, Mean =1.0094. Fig.4b.Reduced set n = 1900, Mean =0.00643. 

Fig. 4c.Reduced again n = 570, Mean = 0.00048. 

Fig.5a. Sphere n = 543, Mean = 2.0054. 

 

Fig.5b.  Reduced n = 287,Mean = 0.0034. 
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As an independent test, two different benchmark data sets: Bajajand CurvedBox-curve [16] are segmented[25] pre- and 

post-reduction using the proposed method and the resulting segmentations are visually compared.  The original 

segmentations are shown in figs 6(a) and 7(a). They have 16172 and 27792 points respectively. Applying the reduction 

algorithm (k = 16, =0.25) gives 12045 points (26% reduction) in the Bajaj set case and 17454 points (38% reduction) 

in the CurvedBox-curve set.  The resulting segmentations are shown in Figures6(b) and 7(b). Comparing Figures6(a) 

and 7(b), and 6(a) and 7(b) indicates that the data reduction has not degraded the information and gives further evidence 

                                        that the data reduction algorithm is behaving sensibly.                               

 

                                                     (a)                                                                  (b)                                     

 

 

 

(a)(b)  

 

 

9. CONCLUSION 

The proposed approach is designed to handle data sets of various types, including scanned (laser or otherwise), meshed 

and triangulated data, of varying density. It can be used to filter data or as a post process to data segmentation or surface 

reconstruction in reverse engineering.  The representative point of a cell is geometrically selected rather than using a 

 

Figure 6: Segmentation of Bajaj data (a) pre- (b) post reduction. 

 

Figure 7: Segmentation of CurveBox data (a) pre- (b) post- reduction. 
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mean or median and is therefore more influenced by the local shape of the point set.The algorithm also differentiates 

between interior and edge points.  Thus the reduction process is constrained so that edges can be better maintained. This 

is particularly useful when the density of the scanned data is low along boundaries.  

 

Finallythe reduction process is governed by threshold values .  controls the amount of data reduction within each cell.  

Thus the user is able to specify the amount of data to be reduced and control the algorithm to suit specific data sets.  For 

example a large value of  will suffice for planar data, reducing the computational time for the reduction process.  For 

freeform shapes, the selection of is governed by the required level of data reduction.  However, if the noise level in the 

data is high, the thresholds can be reduced, effectively increasing the number of partitions of the data and reducing the 

number of points and hence the variability within each cell. 

The algorithm has been demonstrated to perform as expected, reducing the data whilst maintaining enough shape 

information to reproduce the original shape. Further experimentation on data sets varying the threshold values has 

produced equally encouraging results.  It is therefore worthy of further consideration.  One adaptation would be to 

extend the algorithm to recognise curvature information which should further improve its shape preserving nature. 
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