
Volume 1, No. 4, November 2010

Journal of Global Research in Computer ScienceJournal of Global Research in Computer ScienceJournal of Global Research in Computer ScienceJournal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 68

GENERATION OF ALL SPANNING TREES A COMBINATORIAL APPROACH

Saptarshi Naskar
1
, Krishnendu Basuli

2
 and Samar Sen Sarma

3

1Dept. of Computer Science, Sarsuna College, Kolkata, India

sapgrin@gmail.com
2Dept. of Computer Science, WBSU, Kolkata, India

krishnendu.basuli@gmail.com
3Dept. of Computer Science and Engg., University of Calcutta, Kolkata, India

sssarma2001@yahoo.com

Abstract: This paper deals with all spanning tree generation of a simple, symmetric and connected graph. Since, number of spanning trees of a graph is

asymptotically exponential it is our endeavor to generate, all trees in reasonable amount of time and space[1]. The method here is qualitatively and quantitatively

better than existing methods. The reason behind the claim is minimum number of duplicate tree comparison and no circuit testing at all for its realization[1,6-11].

We are hopeful that betterment of the algorithm lies in the target of no duplicate tree generation.

Key words: Spanning Tree, Fundamental Circuit Matrix, Degree of Freedom, Transition Vector, Gray Code.

INTRODUCTION

Generation of all spanning trees of a simple, symmetric,

connected graph G(V,E); where |V| = number of vertices

and |E| = number of edges(In this paper G is used for graphs

with the mentioned qualification), is a very old and well

known problem of graph theory[2,3]. There are three basic

class of tree generation algorithm:

 (a) Trees by test and select method.

 (b) By decomposition method.

 and (c) By Elementary Tree Transformation method.

In this paper we are only concentrating on the ‘Elementary

tree Transformation method’. The major problem of all tree

generation algorithms are[1]:

 (a) Huge storage space

 (b) Duplicate tree generation

 and(c) Exponential time complexity.

That is why this problem is treated as an intractable

problem[1,4,5]. According to elementary tree transformation

method, first one need to generate an initial tree and then a

chord is added to the tree and that forms a circuit with some

tree branches[3,5]. Then one tree branch, participating in the

circuit, is to be removed at a time, keeping the chord branch

intact to form unique trees. Thus all trees can be generated

by taking one chord at a time, two chords at a time, so on

and replacing them in the tree with same number of tree

branches[3,5].

The major advantage of the tree generation using elementary

tree transformation algorithm over the other class of tree

generation algorithms is it definitely do not produce any

non-tree[1]. A close look to the method clears that while

generating all spanning trees by the elementary tree

transformation method, we need to generate all circuits

which is again an intractable problem[1]. The above

problem is intractable in the sense that the solution space is

exponential[1].

In reference 1 there is an interesting approach by which

computational overhead of the generation of all circuits is

reduced. We have adopted this idea in our problem and

extended this concept by which we reduced the

computational overhead, space complexity i.e. storage space

and duplicate tree generation.

In the section 2 there is a detail description of the algorithm

and the outline of the algorithm. There are some definitions

related to the algorithm. We have proposed two theorems

and two lemmas and also there are the proofs for the

corresponding lemmas and the theorems. In the section 3

there is the description of the algorithm. In the section 4

there are the salient features of the algorithm. In the section

5 there is the main algorithm. In the section 6 there is an

example worked out. Also we can find the corresponding

technique how the algorithm works. In the section 7 there

are two tables one is showing the trees generated and

another comparing the time required by a computer having

specification (P-VI, Dual Core 2.8 GHZ processor, 512(400)

MB RAM) of the present method and the previous other

algorithms. In the section 8 there is an explanation of the

algorithm for its open problem nature. In the section 9 there

is an explanation of the theoretical complexity of the present

algorithm. We conclude in the section 10.

ALGORITHM OUTLINE

In this section first we must clearly define some terms

related to our algorithm.

Fundamental Circuit Matrix(FCM): This is a matrix with |e|

columns and |e-r| rows, where r is the rank of the graph.

First |n-1| columns are branch edges of the initial tree, next

|e-r| columns are chord branches.

ATM: This is the abbreviation of All Tree Matrix. This

matrix contains valid trees.

TATM: This is the abbreviation of Temporary All Tree

Matrix.

Set-G: This is the set of cardinality 2|e-r|-1. Each element is

the gray codes of |e-r| bit length.

Saptarshi Naskar et al, Journal of Global Research in Computer Science, 1 (4),November 2010, 68-74

© JGRCS 2010, All Rights Reserved 69

The unit distance chords are gray codes. There are 2n

numbers of bit strings for n bit string, such that successive

codes differ by one bit. A gray code can be represented by

its transition sequence that is ordered list of the bit positions,

numbered from right to left, that change as we go form one

code string to the next. The transition sequence can be

generated at constant time. If we consider the variables of

the gray codes are the chords of a graph and the nullity is |e-

r|, then each bit string of Set-G represent transition vectors.

The transition vectors help us in the generation of all circuit

vectors by modulo-2 sum of two circuit vectors only instead

of choosing one circuit, two circuits etc. This reduces the

time from en2(n-1) to e2n, by 2/n times approximately[1].

In our algorithm in the initial tree a transition vector is

added and it results into a circuit. This circuit is broken by

deleting m number of tree branches, where m is the existing

degree of freedom of the transition vector. Each tree is

stored into TATM as dth distance tree. ith transition vector is

applied for each of the dth distance tree for formation of next

circuit vector i.e. for formation of (d+1)th distance tree. If (i-

1)th transition vector contains less number of existing degree

of freedom than ith transition vector, otherwise it is applied

to initial tree and TATM is made NULL.

THEOREM 1: Algorithm Elementary-Gray-Tree(EGT)

generates all trees of G.

PROOF:

According to elementary tree transformation method all

possible combinations of circuits are generated using gray

code generation tool. Since all possible combination of n

bits can be generated using gray code. Here in the EGT

generated combinations are actually all possible

combinations. Therefore in the above algorithm all circuits

are generated, and hence all trees are generated.

THEOREM 2: Duplicate trees are generated at the same

distance.

PROOF:

We know that gray codes are unit distance unique code.

According to EGT algorithm a circuit is generated from a

gray code and all the spanning trees are stored for the same

distance code. Next distance gray code differs from the

previously used gray code, in the previous distance by one

bit. This bit is nothing but the chord bit.

Hence present tree set must contain a new chord which was

present in the previously generated tree set.

Hence it is not possible to generated duplicate trees in the

different distances. Hence the theorem is proved.

LEMMA 1: If a circuit vector contains no tree branches that

can not generate any new tree.

PROOF:

A circuit vector contains some cord branches and some tree

branches. That indicates the chords are forming circuits with

the tree branches.

If a circuit vector contains no tree branches that means a

circuit is formed using only chords. According to EGT there

is no tree branches remains that can be replaced by the

chords. Hence no new trees are possible in this case.

Hence, the lemma is proved.

LEMMA 2: Collection of all rows in ATM is the set of all

trees of G.

PROOF:

Since, Set-G is the all possible combination of chords. As all

the transition vectors in Set-G are unique, each combination

is unique. Hence generated trees from each distinct

combination are unique. As all possible combination of such

trees are generated. Hence the lemma is proved.

ALGORITHM DESCRIPTION

An initial tree T0 is generated from G by DFS method. Say

rank of the graph is r and nullity is |e-r| .Then store row-0 by

{1,1,…….,rth },{0,0,….(e-r)th } at ATM.

Transition sequence is generated by using a stack operation

as follows:

The stack initially contains n(=|e-r|) elements as n,(n-1),(n-

2)………..,2,1. (with 1 on the top). Algorithm POPs off the

top element, i and puts it into the sequence;i-1, i-2,……1 are

then pushed onto the stack. If there is nothing to push, stop,

from the transition sequence.

Set-G is constructed. FCM is also constructed.

Add gi from Set-G in jth row of TATM (∀j=1,2,……..). If

the circuit row contains (m+1) 1’s; ring sum all the chord

rows of FCM to have the branch set is to be deleted one at a

time.

If ring sum results into φ reject the gi i.e. chords are forming

circuit to themselves.

If circuit contains (n+1) 1’s identifies new chord in gi which

is not in gi-1 makes extra circuit to branches. Hence need to

remove.

This new row is inserted in TATM at the end if ring sum to

existing rows to the new one is not φ else the new row is

rejected. Thus duplication is removed.

Same process is repeated for all jth rows in TATM when j is

maximum then copy TATM and ATM and empty TATM.

If gi+1 contains more 1’s than gi ,gi is assigned by gi+1

process is repeated. Otherwise gi is assigned by gi+1 and

ATM and TATM is made empty except row φ of ATM and

same process is repeated. Thus all distance spanning trees

are generated, since we have exhausted all the distinct

circuits.

SALIENT FEATURES OF THE ALGORITHM

(i) All circuits generated using gray code reduces

the time complexity of all circuit generation.

(ii) Since only a single chord is added if necessary,

for generation of a new circuit. The tree

generation is practically reduced to addition of

only a new tree branch. This reduces space

complexity of the algorithm drastically.

(iii) Duplicate tree testing is there, but the storage

requirement is under practical limit.

Saptarshi Naskar et al, Journal of Global Research in Computer Science, 1 (4),November 2010, 68-74

© JGRCS 2010, All Rights Reserved 70

PROPOSED ALGORITHM

Input: Incidence matrix of a simple, symmetric and

connected graph G.

 Let N = 2(e-r)−1

Output: ATM matrix of T×e order. Where, T is number of

trees and e number of edges of the graph.

ALGORITHM: ALL_TREES

Step 1: input the incidence matrix M of graph G.

Step 2: T0=Call DFS.

Step 3: B={ bi; ∀ i=1,2,…,r; r is the rank of the graph}

 C={ci; ∀ i=1,2,…, (e-r); e is the number of edges

of G}

 GM={gi; ∀ i=1,2,…, N}

 To construct GM, Call GRAY_CODE_MAT.

Step 4: F=Fundamental Circuit Matrix, To construct F Call

FCM

Step 5: Initialize ATM and TATM by T0. i�1.

Step 6: Identify the Chord edges from gi, and ring-sum the

corresponding rows of the

 F to identify the circuit branches.

Step 7: Eliminate one branch at a time, except the chord

branches and store them in

 TATMj i.e. at jth row.

Step 8: If jth row contains n elements goto step 17

Step 9: j�j+1.

Step 10: Repeat through Step 7 while all branches are not

been exhausted.

Step 11:Remove the twin rows from TATM, and

copy all the rows of TATM to ATM.

Step 12: If gi > gi+1 goto Step 15, else Continue.

Step 13: i�i+1;

Step 14: If I � N goto Step 6, else goto Step 18.

Step 15: Delete All rows from TATM except the 1st row,

copy all the rows of TATM

 back to ATM.

Step 16: i�i+1, goto Step 6.

Step 17: Repeat through Step 11.

Step 18: Stop.

ALGORITHM: DFS[5]

Step1: i� i+1

Step2: num(v) � i

Step3: For w ∈ Adj (v) Do

Step4: If num(w) = 0 Then

Step5: (v,w) is a tree edge

Step6: T � T ∪ {(v,w)}

Step7: Call Procedure DFS(w,v)

Step8: Else If num(w) < num(v) and w � u Then

Step9: (v,w) is a back edge

Step10: B� B ∪ {(v,w)}

Step11: End if

Step12: End For

Step13: Return

ALGORITHM: GRAY_CODE_MAT[7,10]

Step1: GM(i)�i ∀i=1,2,3,…

Step2: Copy Entire GM to TGM

Step3: i�0, r�0

Step4: If TGM(i)�0 Then Continue Else Goto Step 14

Step5: n=PAT(r)=TGM(i)

Step6: r�r+1

Step7: Shift Left one bit of TGM

Step8: j=Position of n in GM

Step9: IF j�0 Then Continue Else Goto Step 13

Step10: Shift Right TGM by one bit and Assign

the value in GM

Step11: End IF

Step12: End If

Step13: Repeat Through Step 4

Step14: Return

ALGORITHM: FCM[6]

EXAMPLE WORKED OUT

Let a graph G is given:

Step 1: A tree T0 is generated from G using DFS.

Here, set of branches of the initial spanning tree, B={bi, ∀

i= 1,2,3,4} and set of chords of the initial tree, C={ci, ∀

i=1,2,3}. Therefore, T0 is given by:

b1

b2

c2

b3

c1

c3

b4

1

2 5

3

4

b1

b2

c2

b3

c1

c3

b4

1

2 5

3

4

2

b1

b2
b3 b4

1

5

3

4 2

Saptarshi Naskar et al, Journal of Global Research in Computer Science, 1 (4),November 2010, 68-74

© JGRCS 2010, All Rights Reserved 71

Step 2:Now chord c1 is placed in the tree and produced a

circuit with b1, b2 and b4. Then keeping c1 intact and

deleting b1, b2 and b4 one by one we produce all the distance

1 trees.

Thus all distance trees can be generated.

Table 1: This table can be used to show all the trees ATM(All Tree Matrix)

Tree

Distance

Tree

No.

b1 b2 b3 b4 c3 c2 c1 Gray

Code

0 1 1 1 1 1 0 0 0 000

1

2 0 1 1 1 0 0 1

001 3 1 0 1 1 0 0 1

4 1 1 1 0 0 0 1

2

5 1 0 1 0 0 1 1

011

6 0 1 1 0 0 1 1

7 1 1 0 0 0 1 1

* 0 1 1 0 0 1 1

8 0 1 0 1 0 1 1

* 1 0 1 0 0 1 1

9 1 0 0 1 0 1 1

1

10 1 0 1 1 0 1 0

010 11 1 1 0 1 0 1 0

12 0 1 1 1 0 1 0

2

13 1 0 1 0 1 1 0

110

14 1 0 0 1 1 1 0

15 0 1 0 1 1 1 0

* 1 0 0 1 1 1 0

16 1 1 0 0 1 1 0

17 0 1 1 0 1 1 0

* 0 1 0 1 1 1 0

3 # 0 0 0 0 1 1 1 111

 # 0 1 1 1 1 0 1

Saptarshi Naskar et al, Journal of Global Research in Computer Science, 1 (4),November 2010, 68-74

© JGRCS 2010, All Rights Reserved 72

2 # 1 0 1 1 1 0 1 101

1 1 0 1 1 0 1

2

18 0 1 1 0 1 0 1

101

19 0 1 0 1 1 0 1

20 1 0 1 0 1 0 1

21 1 0 0 1 1 0 1

22 1 1 0 0 1 0 1

* 0 1 0 1 1 0 1

* 1 0 0 1 1 0 1

1 23 1 1 1 0 1 0 0
100

24 1 1 0 1 1 0 0

Here # means Non-trees and * means Duplicate Trees.

EXPERIMENTAL RESULTS

Table 2: This table contains a comparison of the algorithm with the test and select method in CPU time.

 Test and Select Present %

Vertices Edges Time (ms) Time (ms)

4 6 0 0 0

5 7 0.01 0.01 0

5 9 0.021 0.01 1.1

6 10 0.049 0.04 0.9

6 12 0.049 0.045 0.4

7 13 0.068 0.057 1.1

7 15 0.07 0.069 0.1

8 16 0.087 0.081 0.6

8 18 0.09 0.0815 0.85

9 19 0.09 0.09 0

9 21 0.12 0.1 2

10 22 0.133 0.129 0.4

10 24 0.144 0.141 0.3

11 25 0.155 0.153 0.2

11 27 0.167 0.165 0.2

12 28 0.299 0.27 2.9

12 30 0.351 0.35 0.1

13 31 0.47 0.43 4

13 33 0.566 0.51 5.6

14 34 1.1 1.09 1

14 36 1.29 1.23 6

15 37 1.5 1.5 0

15 39 1.8 1.5 30

16 40 2.01 1.883 12.7

16 42 2.01 1.9 11

17 43 2.4 2.3 10

17 45 2.55 2.5 5

18 46 2.9 2.839 6.1

18 48 3.1 3.078 2.2

19 49 3.61 3.5 11

19 51 3.667 3.6 6.7

20 52 3.8 3.795 0.5

20 54 4.12 4.034 8.6

Saptarshi Naskar et al, Journal of Global Research in Computer Science, 1 (4),November 2010, 68-74

© JGRCS 2010, All Rights Reserved 73

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40

T
im
e
 (
m
s
)

Vertices

Test and

Select

Figure 1: This is the corresponding graph representation of the Table 2 data.

OPEN PROBLEM

We are in search of an algorithm which can generate all

spanning trees of a simple, symmetric and connected graph.

The existing algorithms all takes too much time for direct

and/or indirect testing of circuits. Our algorithm which takes

cyclic interchange procedure needs indirect way for

generation of all trees some circuit testing and also some

time is taken for duplicate tree testing. The most efficient

decomposition algorithm takes O(eN) time where e is the

number of edges and N is number of spanning trees. It is

open to reduce the efficiency of all trees generation in O(N)

times. All though we have no way to reduce exponential

times N as it is the number of spanning trees of the graph.

COMPUTATIONAL COMPLEXITY

Let, number of vertices for the given graph G is V, number

of edges is E and the number of tree possible for the graph is

N. Then the algorithm must output N number of trees. Now,

to generate a single tree form the module ALL_TREES:

(i) To generate T0 the required time complexity is of

O(Elog(V) + V).

(ii) For the module Gray_Code_Mat O(V2)

(iii) For the module FCM time required is O(V2)

Since, in the limiting case N actually dominating factor over

V
2 then over all time complexity for the proposed algorithm

is O(Elog(V) + V + N).

Now the space complexity for the algorithm is only the

space required to represent the single tree. And since, only

single level trees are required to store then at most V rows

are required. Hence the space required for this algorithm is

O(V2).

Since, N represents number of trees it may be exponential in

the worst case. Obviously, the conclusion is trivial as we are

generating all trees of any graph.

CONCLUSION

We have highlighted elementary tree transformation method

in this paper. The method takes the advantage of all circuit

generation using the advantage of transition sequence

generation from binary to gray code. For a large number of

trees, the advantage in enormous. And we consider that the

method supersedes the existing methods, mainly at this

point. The secondary reason for its supremacy is that, since

duplicate testing are limited to a small fraction of circuits

the space complexity is within a practical limit. We

conclude here and wait for the betterment in near future.

REFERENCES

[1] B. Rao and V. G. K. Murti. Enumeration of All Trees a

Graph Computer Program, Electronics Letters, Vol. 6,

No. 4, 1970.

[2] B. Rao and V. G. K. Murti. Enumeration of All Trees a

Graph Computer Program, Electronics Letters, Vol. 6,

No. 4, 1970.

[3] H. M. Trent, A Note on the Enumeration and Listing of

All Possible Trees in a Connected Linier Graph, Proc.

Nat. Acad. Sci. U.S.A., Vol. 40, p. 1004.

[4] I. Pak and A. Postnikov, Enumeration of Spanning Trees

of Graphs, Harvard University, Massachusetts Institute

of Technology, 1994.

[5] M. Peikarski, Listing of All Possible Trees of a Linear

Graph, lbid., CT-12, Correspondence, pp. 124-125,

1965.

[6] N. Deo, Graph Theory with Applications to Engineering

and Computer Science. Prentice-Hall of India Private

Limited, New Delhi, 2003.

[7] Reingold, Nievergelt and Deo, Combinatorial

Algorithms, Prentice-Hall, Inc., 1977.

[8] S.L. Hakimi, On the Trees of a Graph and Their

Generation. J. Franklin Inst. 270, pp. 347-359, 1961.

Saptarshi Naskar et al, Journal of Global Research in Computer Science, 1 (4),November 2010, 68-74

© JGRCS 2010, All Rights Reserved 74

[9] S. Seshu and M. B. Reed, Linear Graphs and Electrical

Networks, Rading, Mass, Addision-Wesley, 1961.

[10] S. Sen Sarma, A. Rakshit, R. K. Sen, A. K. Choudhury.

An Efficient Tree Generation Algorithm, Journal of the

Institution of Electronics and Telecommunications

Engineers (IETE), Vol. 27, No. 3, pp. 105-109, 1981.

[11] W. Mayeda, Graph Theory, Wiley Inter-science, 1972.

[12] W. Mayeda & S. Seshu, Generation of Trees without

Duplications, IEEE Trans, CT-12, pp. 181-185, 1965.

