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Abstract: This paper deals with all spanning tree generation of a simple, symmetric and connected graph. Since, number of spanning trees of a graph is 

asymptotically exponential it is our endeavor to generate, all trees in reasonable amount of time and space[1]. The method here is qualitatively and quantitatively 

better than existing methods. The reason behind the claim is minimum number of duplicate tree comparison and no circuit testing at all for its realization[1,6-11]. 

We are hopeful that betterment of the algorithm lies in the target of no duplicate tree generation. 
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INTRODUCTION 

 

Generation of all spanning trees of a simple, symmetric, 

connected graph G(V,E); where |V| = number of vertices 

and |E| = number of edges(In this paper G is used for graphs 

with the mentioned qualification), is a very old and well 

known problem of graph theory[2,3]. There are three basic 

class of tree generation algorithm: 

 (a) Trees by test and select method. 

 (b) By decomposition method. 

            and (c) By Elementary Tree Transformation method. 

In this paper we are only concentrating on the ‘Elementary 

tree Transformation method’. The major problem of all tree 

generation algorithms are[1]: 

 (a) Huge storage space 

 (b) Duplicate tree generation 

            and(c) Exponential time complexity. 

That is why this problem is treated as an intractable 

problem[1,4,5]. According to elementary tree transformation 

method, first one need to generate an initial tree and then a 

chord is added to the tree and that forms a circuit with some 

tree branches[3,5]. Then one tree branch, participating in the 

circuit, is to be removed at a time, keeping the chord branch 

intact to form unique trees. Thus all trees can be generated 

by taking one chord at a time, two chords at a time, so on 

and replacing them in the tree with same number of tree 

branches[3,5]. 

The major advantage of the tree generation using elementary 

tree transformation algorithm over the other class of tree 

generation algorithms is it definitely do not produce any 

non-tree[1]. A close look to the method clears that while 

generating all spanning trees by the elementary tree 

transformation method, we need to generate all circuits 

which is again an intractable problem[1]. The above 

problem is intractable in the sense that the solution space is 

exponential[1]. 

In reference 1 there is an interesting approach by which 

computational overhead of the generation of all circuits is 

reduced. We have adopted this idea in our problem and 

extended this concept by which we reduced the 

computational overhead, space complexity i.e. storage space 

and duplicate tree generation. 

In the section 2 there is a detail description of the algorithm 

and the outline of the algorithm. There are some definitions 

related to the algorithm. We have proposed two theorems 

and two lemmas and also there are the proofs for the 

corresponding lemmas and the theorems. In the section 3 

there is the description of the algorithm. In the section 4 

there are the salient features of the algorithm. In the section 

5 there is the main algorithm. In the section 6 there is an 

example worked out. Also we can find the corresponding 

technique how the algorithm works. In the section 7 there 

are two tables one is showing the trees generated and 

another comparing the time required by a computer having 

specification (P-VI, Dual Core 2.8 GHZ processor, 512(400) 

MB RAM) of the present method and the previous other 

algorithms. In the section 8 there is an explanation of the 

algorithm for its open problem nature. In the section 9 there 

is an explanation of the theoretical complexity of the present 

algorithm. We conclude in the section 10. 

 

ALGORITHM OUTLINE 

 

In this section first we must clearly define some terms 

related to our algorithm. 

Fundamental Circuit Matrix(FCM): This is a matrix with |e| 

columns and |e-r| rows, where r is the rank of the graph. 

First |n-1| columns are branch edges of the initial tree, next 

|e-r| columns are chord branches. 

ATM: This is the abbreviation of All Tree Matrix. This 

matrix contains valid trees. 

TATM: This is the abbreviation of Temporary All Tree 

Matrix. 

Set-G: This is the set of cardinality 2|e-r|-1. Each element is 

the gray codes of |e-r| bit length.  
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The unit distance chords are gray codes. There are 2n 

numbers of bit strings for n bit string, such that successive 

codes differ by one bit. A gray code can be represented by 

its transition sequence that is ordered list of the bit positions, 

numbered from right to left, that change as we go form one 

code string to the next. The transition sequence can be 

generated at constant time. If we consider the variables of 

the gray codes are the chords of a graph and the nullity is |e-

r|, then each bit string of Set-G represent transition vectors. 

The transition vectors help us in the generation of all circuit 

vectors by modulo-2 sum of two circuit vectors only instead 

of choosing one circuit, two circuits etc. This reduces the 

time from en2(n-1) to e2n, by 2/n times  approximately[1]. 

In our algorithm in the initial tree a transition vector is 

added and it results into a circuit. This circuit is broken by 

deleting m number of tree branches, where m is the existing 

degree of freedom of the transition vector. Each tree is 

stored into TATM as dth distance tree. ith transition vector is 

applied for each of the dth distance tree for formation of next  

circuit vector i.e. for formation of (d+1)th distance tree. If (i-

1)th transition vector contains less number of existing degree 

of freedom than ith transition vector, otherwise it is applied 

to initial tree and TATM is made NULL. 

 

THEOREM 1: Algorithm Elementary-Gray-Tree(EGT) 

generates all trees of G. 

 

PROOF:  

 

According to elementary tree transformation method all 

possible combinations of circuits are generated using gray 

code generation tool. Since all possible combination of n 

bits can be generated using gray code. Here in the EGT 

generated combinations are actually all possible 

combinations. Therefore in the above algorithm all circuits 

are generated, and hence all trees are generated. 

  

THEOREM 2: Duplicate trees are generated at the same 

distance. 

 

PROOF:  

 

We know that gray codes are unit distance unique code. 

According to EGT algorithm a circuit is generated from a 

gray code and all the spanning trees are stored for the same 

distance code. Next distance gray code differs from the 

previously used gray code, in the previous distance by one 

bit. This bit is nothing but the chord bit. 

Hence present tree set must contain a new chord which was 

present in the previously generated tree set. 

Hence it is not possible to generated duplicate trees in the 

different distances. Hence the theorem is proved. 

   

LEMMA 1: If a circuit vector contains no tree branches that 

can not generate any new tree. 

 

PROOF: 

 

A circuit vector contains some cord branches and some tree 

branches. That indicates the chords are forming circuits with 

the tree branches. 

If a circuit vector contains no tree branches that means a 

circuit is formed using only chords. According to EGT there 

is no tree branches remains that can be replaced by the 

chords. Hence no new trees are possible in this case. 

Hence, the lemma is proved.    

          

LEMMA 2: Collection of all rows in ATM is the set of all 

trees of G. 

 

PROOF: 

 

Since, Set-G is the all possible combination of chords. As all 

the transition vectors in Set-G are unique, each combination 

is unique. Hence generated trees from each distinct 

combination are unique. As all possible combination of such 

trees are generated. Hence the lemma is proved.  

          

ALGORITHM DESCRIPTION 
 

An initial tree T0 is generated from G by DFS method. Say 

rank of the graph is r and nullity is |e-r| .Then store row-0 by 

{1,1,…….,rth  },{0,0,….(e-r)th } at ATM. 

Transition sequence is generated by using a stack operation 

as follows: 

The stack initially contains n(=|e-r|) elements as n,(n-1),(n-

2)………..,2,1. (with 1 on the top). Algorithm POPs off the 

top element, i and puts it into the sequence;i-1, i-2,……1 are 

then pushed onto the stack. If there is nothing to push, stop, 

from the transition sequence. 

Set-G is constructed. FCM is also constructed. 

Add gi from Set-G in jth row of TATM (∀j=1,2,……..). If 

the circuit row contains ( m+1) 1’s; ring sum all the chord 

rows of FCM to have the branch set is to be deleted one at a 

time. 

If ring sum results into φ reject the gi i.e. chords are forming 

circuit to themselves. 

If circuit contains (n+1) 1’s identifies new chord in gi which 

is not in gi-1 makes extra circuit to branches. Hence need to 

remove. 

This new row is inserted in TATM at the end if ring sum to 

existing rows to the new one is not φ else the new row is 

rejected. Thus duplication is removed. 

Same process is repeated for all jth rows in TATM when j is 

maximum then copy TATM and ATM and empty TATM. 

If gi+1 contains more 1’s than gi ,gi is assigned by gi+1  

process is repeated. Otherwise gi is assigned by gi+1 and 

ATM and TATM is made empty except row φ of ATM and 

same process is repeated. Thus all distance spanning trees 

are generated, since we have exhausted all the distinct 

circuits. 

 

SALIENT FEATURES OF THE ALGORITHM 

 

(i) All circuits generated using gray code reduces 

the time complexity of all circuit generation. 

(ii) Since only a single chord is added if necessary, 

for generation of a new circuit. The tree 

generation is practically reduced to addition of 

only a new tree branch. This reduces space 

complexity of the algorithm drastically. 

(iii) Duplicate tree testing is there, but the storage 

requirement is under practical limit. 
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PROPOSED ALGORITHM 

 

Input: Incidence matrix of a simple, symmetric and 

connected graph G.  

 Let N = 2(e-r)−1 

 

Output: ATM matrix of T×e order. Where, T is number of 

trees and e number of edges of the graph. 

 

ALGORITHM: ALL_TREES 

 

Step 1: input the incidence matrix M of graph G. 

Step 2: T0=Call DFS. 

Step 3: B={ bi; ∀ i=1,2,…,r; r is the rank of the graph} 

 C={ci; ∀ i=1,2,…, (e-r); e is the number of edges 

of G} 

 GM={gi; ∀ i=1,2,…, N} 

 To construct GM, Call GRAY_CODE_MAT. 

Step 4: F=Fundamental Circuit Matrix, To construct F Call 

FCM 

Step 5: Initialize ATM and TATM by T0. i�1. 

Step 6: Identify the Chord edges from gi, and ring-sum the 

corresponding rows of the  

 F to identify the circuit branches. 

Step 7: Eliminate one branch at a time, except the chord 

branches and store them in  

 TATMj i.e. at jth row. 

Step 8: If jth row contains n elements goto step 17 

Step 9: j�j+1. 

Step 10: Repeat through Step 7 while all branches are not 

been exhausted. 

Step 11:Remove the twin rows from TATM, and 

copy all the rows of TATM to ATM. 

Step 12: If gi > gi+1 goto Step 15, else Continue. 

Step 13: i�i+1; 

Step 14: If I � N goto Step 6, else goto Step 18. 

Step 15: Delete All rows from TATM except the 1st row, 

copy all the rows of TATM  

   back to ATM. 

Step 16: i�i+1, goto Step 6. 

Step 17: Repeat through Step 11. 

Step 18: Stop. 

 

ALGORITHM: DFS[5] 

 

Step1: i� i+1 

Step2: num(v) � i 

Step3: For w ∈ Adj (v) Do 

Step4:   If num(w) = 0 Then 

Step5:    (v,w) is a tree edge 

Step6:    T � T ∪ {(v,w)} 

Step7:    Call Procedure DFS(w,v) 

Step8:   Else If num(w) < num(v) and w � u Then 

Step9:    (v,w) is a back edge 

Step10:   B� B ∪ {(v,w)} 

Step11:  End if 

Step12: End For 

Step13: Return 

 

ALGORITHM: GRAY_CODE_MAT[7,10] 

 

Step1: GM(i)�i  ∀i=1,2,3,… 

Step2: Copy Entire GM to TGM 

Step3: i�0, r�0 

Step4: If TGM(i)�0 Then Continue Else Goto Step 14 

Step5:   n=PAT(r)=TGM(i) 

Step6:   r�r+1 

Step7:   Shift Left one bit of TGM 

Step8:   j=Position of n in GM 

Step9:   IF j�0 Then Continue Else Goto Step 13 

Step10:   Shift Right TGM by one bit and Assign 

the value in GM 

Step11:  End IF 

Step12: End If 

Step13: Repeat Through Step 4 

Step14: Return 

 

ALGORITHM: FCM[6] 

 

EXAMPLE WORKED OUT 

 

Let a graph G is given: 

 
 

Step 1: A tree T0 is generated from G using DFS. 

 

 
 

Here, set of branches of the initial spanning tree, B={bi, ∀ 

i= 1,2,3,4} and set of chords of the initial tree, C={ci, ∀ 

i=1,2,3}. Therefore, T0 is given by: 
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Step 2:Now chord c1 is placed in the tree and produced a 

circuit with b1, b2 and b4. Then keeping c1 intact and 

deleting b1, b2 and b4 one by one we produce all the distance 

1 trees. 

 

 

 
Thus all distance trees can be generated. 

 

Table 1: This table can be used to show all the trees ATM(All Tree Matrix) 

Tree 

Distance 

Tree 

No. 

b1 b2 b3 b4 c3 c2 c1 Gray 

Code 

0 1 1 1 1 1 0 0 0 000 

 

1 

2 0 1 1 1 0 0 1  

001 3 1 0 1 1 0 0 1 

4 1 1 1 0 0 0 1 

 

 

 

2 

5 1 0 1 0 0 1 1  

 

 

011 

6 0 1 1 0 0 1 1 

7 1 1 0 0 0 1 1 

* 0 1 1 0 0 1 1 

8 0 1 0 1 0 1 1 

* 1 0 1 0 0 1 1 

9 1 0 0 1 0 1 1 

 

1 

10 1 0 1 1 0 1 0  

010 11 1 1 0 1 0 1 0 

12 0 1 1 1 0 1 0 

 

 

 

2 

13 1 0 1 0 1 1 0  

 

 

110 

14 1 0 0 1 1 1 0 

15 0 1 0 1 1 1 0 

* 1 0 0 1 1 1 0 

16 1 1 0 0 1 1 0 

17 0 1 1 0 1 1 0 

* 0 1 0 1 1 1 0 

3 # 0 0 0 0 1 1 1 111 

 # 0 1 1 1 1 0 1  
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2 # 1 0 1 1 1 0 1 101 

# 1 1 0 1 1 0 1 

 

 

 

2 

18 0 1 1 0 1 0 1 

101 

19 0 1 0 1 1 0 1 

20 1 0 1 0 1 0 1 

21 1 0 0 1 1 0 1 

22 1 1 0 0 1 0 1 

* 0 1 0 1 1 0 1 

* 1 0 0 1 1 0 1 

1 23 1 1 1 0 1 0 0 
100 

24 1 1 0 1 1 0 0 

Here # means Non-trees and * means Duplicate Trees. 

 

EXPERIMENTAL RESULTS 

Table 2: This table contains a comparison of the algorithm with the test and select method in CPU time. 

  Test and Select Present % 

Vertices Edges Time (ms) Time (ms)  

4 6 0 0 0 

5 7 0.01 0.01 0 

5 9 0.021 0.01 1.1 

6 10 0.049 0.04 0.9 

6 12 0.049 0.045 0.4 

7 13 0.068 0.057 1.1 

7 15 0.07 0.069 0.1 

8 16 0.087 0.081 0.6 

8 18 0.09 0.0815 0.85 

9 19 0.09 0.09 0 

9 21 0.12 0.1 2 

10 22 0.133 0.129 0.4 

10 24 0.144 0.141 0.3 

11 25 0.155 0.153 0.2 

11 27 0.167 0.165 0.2 

12 28 0.299 0.27 2.9 

12 30 0.351 0.35 0.1 

13 31 0.47 0.43 4 

13 33 0.566 0.51 5.6 

14 34 1.1 1.09 1 

14 36 1.29 1.23 6 

15 37 1.5 1.5 0 

15 39 1.8 1.5 30 

16 40 2.01 1.883 12.7 

16 42 2.01 1.9 11 

17 43 2.4 2.3 10 

17 45 2.55 2.5 5 

18 46 2.9 2.839 6.1 

18 48 3.1 3.078 2.2 

19 49 3.61 3.5 11 

19 51 3.667 3.6 6.7 

20 52 3.8 3.795 0.5 

20 54 4.12 4.034 8.6 
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Figure 1: This is the corresponding graph representation of the Table 2 data. 

 

OPEN PROBLEM 

 

We are in search of an algorithm which can generate all 

spanning trees of a simple, symmetric and connected graph. 

The existing algorithms all takes too much time for direct 

and/or indirect testing of circuits. Our algorithm which takes 

cyclic interchange procedure needs indirect way for 

generation of all trees some circuit testing and also some 

time is taken for duplicate tree testing. The most efficient 

decomposition algorithm takes O(eN ) time where e is the 

number of edges and N is number of spanning trees. It is 

open to reduce the efficiency of all trees generation in O(N) 

times. All though we have no way to reduce exponential 

times N as it is the number of spanning trees of the graph. 

 

COMPUTATIONAL COMPLEXITY 

 

Let, number of vertices for the given graph G is V, number 

of edges is E and the number of tree possible for the graph is 

N. Then the algorithm must output N number of trees. Now, 

to generate a single tree form the module ALL_TREES: 

(i) To generate T0 the required time complexity is of 

O(Elog(V) + V).  

(ii) For the module Gray_Code_Mat O(V2) 

(iii) For the module FCM time required is O(V2)  

Since, in the limiting case N actually dominating factor over 

V
2 then over all time complexity for the proposed algorithm 

is O(Elog(V) + V + N).  

Now the space complexity for the algorithm is only the 

space required to represent the single tree. And since, only 

single level trees are required to store then at most V rows 

are required. Hence the space required for this algorithm is 

O(V2). 

Since, N represents number of trees it may be exponential in 

the worst case. Obviously, the conclusion is trivial as we are 

generating all trees of any graph. 

 

 

CONCLUSION 

 

We have highlighted elementary tree transformation method 

in this paper. The method takes the advantage of all circuit 

generation using the advantage of transition sequence 

generation from binary to gray code. For a large number of 

trees, the advantage in enormous. And we consider that the 

method supersedes the existing methods, mainly at this 

point. The secondary reason for its supremacy is that, since 

duplicate testing are limited to a small fraction of circuits 

the space complexity is within a practical limit. We 

conclude here and wait for the betterment in near future. 
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