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INTRODUCTION
A single number that can be used to characterize some property of the graph of a molecule is called a topological index for 

that graph. There are numerous topological descriptors that have found some applications in theoretical chemistry, especially in 
QSPR/QSAR research [1]. The oldest topological index which introduced by Harold Wiener in 1947 is ordinary (vertex) version of 
Wiener index [2] which is the sum of all distances between vertices of a graph. Also, the edge version of Wiener index which was 
based on the distance between edges introduced by Iranmanesh et al. in 2008 [3]. One of the most important topological indices 
is the well-known branching index introduced by Randic [4] which is defined as the sum of certain bond contributions calculated 
from the vertex degree of the hydrogen-suppressed molecular graphs. Motivated by the definition of Randic connectivity index 
based on the end-vertex degrees of edges in a connected graph G with the vertex set V (G) and the edge set E (G) [5,6]. Vukicevic 
and Furtula [7] proposed a topological index named the geometric-arithmetic index (simply GA) as
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where dG(µ) denotes the degree of the vertex µ in G. The reader can find more information about the geometric arithmetic 
index in [7-12]. In the study carried out by Mahmiani et al. [13], the edge version of the geometric-arithmetic index was introduced 
based on the end-vertex degrees of edges in a line graph of G which is a graph such that each vertex of L(G) represents an edge 
of G; and two vertices of L(G) are adjacent if and only if their corresponding edges share a common endpoint in G, as follows
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where dL(G)(µ) denotes the degrees of an edge µ of the line graph of G.

The edge version of GA index of the benzenoid graph was studied by Farahaini [14]. The total version of GA index was 
considered in [15,16]. Carbon nanotubes form an interesting class of carbon nanomaterials. There are three types of nanotubes: 
armchair, chiral, and zigzag structures. Carbon nanotubes show remarkable mechanical properties. Experimental studies have 
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shown that they belong to the stiffest and elastic known materials. Diudea was the first chemist who considered the problem of 
computing topological indices of nanostructures [17-20].

A graph can be recognized by a numeric number, a polynomial, a drawing, a sequence of numbers or a matrix. A topological 
index is a numeric quantity associated with a graph which characterizes the topology of the graph and is invariant under graph 
automorphism. There are some major classes of topological indices such as distance based topological indices, degree based 
topological indices and counting related polynomials and indices of graphs. Among these classes degree based topological 
indices are of great importance and play a vital role in chemical graph theory and particularly in chemistry. The more precise way, 
a topological index Top (G) of a graph, is a number with the property that for every graph H isomorphic to G, we have Top (H) = 
Top (G). The concept of topological indices came from the work done by Wiener while he was working on boiling point of paraffin, 
named this index as path number. Later, the path number was renamed as Wiener index and the whole theory of topological 
indices started. In this paper, we have investigated the new version of geometric arithmetic index of arbitrary subdivisions of a 
molecular wheel graph of order n.

Definition 1. Let e be an edge with end points {µ,v} of a graph G. Subdividing the edge e means that a new vertex w is added 
to V(G) and the edge e is replaced in E(G) by an edge e′ with end points {µ,w} and an edge e′′ with end points {w,v}.

Definition 2. Subdividing a graph G means performing a sequence of edge-subdivision operations. The resulting graph is 
called a subdivision of the graph G. A subdivision of a graph is a graph formed by subdividing its edges into paths of one or more 
edges. 

Example 1. Performing any k-subdivisions on the n-cycle graph Cn yields the (n+k)-cycle graph Cn+K. 

Definition 3. The barycentric subdivision of a graph G is the subdivision in which one vertex is inserted in the interior of each 
edge.

MAIN RESULTS AND DISCUSSION
In this section, we first give the edge version of GA index of some standard graphs and then the main results of this paper 

will be given.

Example 2. Let Pn be a path with n vertices. Then, the edge version of the geometric arithmetic index of Pn is GAe(Pn)= 

4 2 ( 4)
3

n+ −

Example 3. Let Sn be a star graph with n vertices. Then, the edge version of the geometric arithmetic index of Sn is 

n
(n 1)(S )

2eGA −
=

Example 4. Let Kn be a complete graph with n vertices. Then, the edge version of the geometric arithmetic index of complete 
graph, Kn is 2

n
n(n 1)(K )

2eGA −
=

Example 5. Let Cn be a cycle with n  vertices. Then, the edge version of geometric arithmetic index of Cn is  GAe(Kn)=n.

Example 6. Let Wn be the wheel graph with n vertices. Then, the edge version of geometric arithmetic index of Wn is 

n
8 n 2(W ) (n 1)(1 )

4 2e
nGA

n
−

= − + +
+

Subdivision of the Cycle of the Wheel Graph Wn

In this subsection, we will give the edge version of the subdivision of a wheel graph with respect to the subdivision on the 
cyclic edges only. Firstly, we consider the following example.

Example 7. Let W5,1 be the graph obtained by the barycentric subdivision of the cycle of the wheel of order 5 as depicted in 
Figure 1. It is easy to see that the line graph of W5,1 has 22 edges. On the hand, there are 8 edges with dL(G)(µ)=dL(G)(v)=3, 8 edges 
of type dL(G)(µ)=3, dL(G)(v)=5, and 6 edges with dL(G)(µ)=dL(G)(v)=5. 

The edge version of geometric arithmetic index of W5,1 is given as: 5,1
15 7(W ) 4( )
2 2eGA = +
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Figure 1. W5,1 and its line graph is L(W5,1) in red color.

Lemma 1. Let Wn be the wheel graph with n vertices and Wn,1 is the graph obtained after the barycentric subdivision of the 
cycle of the wheel. Then 

,1
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Proof. It is easy to see that the line graph of Wn,1 has 4(n-1) +|Kn-1| edges. On the hand, there are 2(n – 1) edges with dL(G)
(µ)=dL(G)(v)=3, 2(n-1) edges of type dL(G)(µ)=3, dL(G)(v)=n, and |Kn-1| edges with dL(G)(µ)=dL(G)(v)=n.

Since 
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After an easy simplification, we obtain ,1
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Lemma 2. Let Wn be the wheel graph with n vertices and Wn,2 is the graph obtained after the barycentric subdivision of the 

cycle of the wheel. Then, the edge version of geometric arithmetic index of Wn,2 is given as: 2
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Proof. The line graph of Wn,2 has 5(n - 1) +|K n-1| edges. On the hand, there are 2(n - 1) edges of type dL(G)(µ)=2, dL(G)
(v)=3, (n–1) edges with dL(G)(µ)=dL(G)(v)=3, 2(n - 1) edges of type dL(G)(µ)=3, dL(G)(v)=n, and |Kn-1| edges with dL(G)(µ)=dL(G)(v)=n.

Since 
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After an easy simplification, we obtain 
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Example 8. Let W5,3 be the graph obtained by the uniform 3-subdivision of the cycle of the wheel of order 5. Then 
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Lemma 3. Let Wn be the wheel graph with n vertices and Wn,m is obtained after the uniform m-subdivision of the cycle of the wheel 
by m vertices. Then, the edge version of geometric arithmetic index of Wn,m is given as: 
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Proof. The line graph of Wn,2 has (m+3)(n-1)+|Kn-1| edges. On the hand, there are (m-2)(n-1) edges of type dL(G)(µ)=dL(G)(v)=2, 
2(n-1) edges of type dL(G)(µ)=2, dL(G)(v)=3, (n-1) edges with dL(G)(µ)=dL(G)(v)=3, 2(n-1) edges of type dL(G)(µ)=3, dL(G)(v)=n, and |Kn-1| 
edges with dL(G)(µ)=dL(G)(v)=n. 

Since, 
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Example 9. Let W5,2,3,4,5 be the graph obtained by the subdivision of the cycle of the wheel of order 5. Then 15 1 4 6(G) 14 4
2 2 5eGA

 
= + + + 

 
Theorem 1. Let Wn be the wheel graph with n vertices and the graph G=Wn,k1,k2,k3,…,kn-1 is obtained by sub diving the edges of 

cycle of the wheel by k1,k2,k3,…,kn-1 vertices, where ki ≥ 3 for each i=1,2,3,…,n-1. Then, the edge version of geometric arithmetic 
index of the graph G is given as:
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Proof. Since the line graph of a path 𝑃𝑘𝑖 of length 𝑘𝑖 is again a path of length 𝑘𝑖-1, so the line graph of W𝑛, 𝑘1,𝑘2,𝑘3,…,𝑘𝑛-1 has 
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−∑  edges of type 𝑑L(G)(µ)=𝑑L(G)(𝑣)=2, 2(𝑛-1) edges of type 𝑑L(G)

(µ)=2, 𝑑L(G)(𝑣)=3, (𝑛-1) edges with 𝑑L(G)(µ)=𝑑L(G)(𝑣)=3, 2(𝑛-1) edges of type 𝑑L(G)(µ)=3, 𝑑L(G)(𝑣)=𝑛, and |𝐾𝑛-1| edges with 𝑑L(G)(µ)=𝑑L(G)
(𝑣)=𝑛.

Since, 
2

( ) ( )

( (G)) ( ) ( )

( ). ( )
(G)

( ) ( )
L G L G

e
E L L G L G

d d
GA

d dµν∈

µ ν
=

µ + ν∑ , this implies

1 2 3 1

1

n, k , k , k ,...., k i
1

2 2.2 2 2.3 2 3.3 2 3. ( 1)( 2) 2 n .n(W ) (k 2) 2(n 1) (n 1) 2(n 1)
2 2 2 3 3 3 3 2n

n

e
i

n n nGA
n n n−

−

=

         − −
= − + − + − + − +                  + + + + +         
∑

After an easy simplification, we obtain 
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Let G=W𝑛, 𝑘1,𝑘2,𝑘3,…,𝑘𝑛-1 be a graph obtained from the subdivision of the edges of the cycle of a wheel graph W𝑛 of order n, where, 
𝑘𝑖=1, for each 𝑖=1,2,3,…,𝑡 and 𝑘𝑖 ≥ 2 for each 𝑖=𝑡+1,𝑡+2,…,𝑛-1.

In fact, we can relabelled the number of edges on the cycle of the wheel so that, so that we get the desired label of the 
subdivision. The edge partitions of the graph G are as follows:

𝐸4= {µ𝑣∈𝐸(L(G)): 𝑑L(G)(µ)= 𝑑L(G)(𝑣)=2} , so we have |𝐸4|=
1

1
( 2)n

ii t
k−

= +
−∑  

𝐸6= {µ𝑣∈𝐸(L(G)): 𝑑L(G)(µ)=2 & 𝑑L(G)(𝑣)=3}, so we have |𝐸6|=2(𝑛-1)-2𝑡,
𝐸9= {µ𝑣∈𝐸(L(G)): 𝑑L(G)(µ)=3 & 𝑑L(G)(𝑣)=3}, so we have |𝐸9|=(𝑛-1)+𝑡,
𝐸3𝑛= {µ𝑣∈𝐸(L(G)): 𝑑L(G)(µ)=3 & 𝑑L(G)(𝑣)=𝑛}, so we have |𝐸3𝑛|=2(𝑛-1),
𝐸𝑛.𝑛= {µ𝑣∈𝐸(L(G)): 𝑑L(G)(µ)=𝑛 & 𝑑L(G)(𝑣)=𝑛}, so we have |𝐸𝑛.𝑛|=|𝐾𝑛-1|.

Example 10. Let W5,1,1,2,3 be the graph obtained by the subdivision of the cycle of the wheel of order 5 as depicted in Figure 
2. Then, the edge version of geometric arithmetic index of W5,1,1,2,3 is given as:  

5,1,1,2,3
5 4 6 15 3 4 6(W ) 1 2 4 1

5 2 2 5eGA
   −

= + + + + +      
   

Figure 2. W5,1,1,2,3 and its line graph is L(W5,1,1,2,3) in red color.
Theorem 2. Let W𝑛,𝑘1,𝑘2,𝑘3,…,𝑘𝑛-1 be a graph obtained from the subdivision of a wheel graph of order n, where, 𝑘𝑖=1, for each 

𝑖=1,2,3,…,𝑡 and 𝑘𝑖 ≥ 2 for each 𝑖=𝑡+1,𝑡+2,…,𝑛-1. Then, the edge version of geometric arithmetic index of W𝑛,𝑘1,𝑘2,𝑘3,…,𝑘𝑛-1 is given as:  

 1 2 3 1

1
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Proof. From Equation 2, we have  
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Using the cardinalities of the edge partitions and after simplifications, we get
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Subdivision of the Spoke of the Wheel Graph Wn

In this subsection, we will give the edge version of the subdivision of a wheel graph with respect to the subdivision on the 
spoke of the wheel only.

Example 11. Let ( )1
5W  be the graph obtained by the barycentric subdivision of the spoke of the wheel of order 5. Then

( )1
5

6 12 54
7 2eGA W

 
= +  

 
Lemma 4. Let Wn be the wheel graph with n vertices and ( )2

nW  is the barycentric subdivision of the spokes of the wheel. Then 

1 4 12 2 3 3( ) (n 1)
7 2 2e n

n nGA W
n

 −
= − + +  + 

.

Proof. By continuing an induction argument on n, one can check that in general, the line graph of ( )1
nW  has 4(𝑛-1) + |𝐾𝑛-1| 

edges. On the hand, there are (𝑛–1) edges with 𝑑L(G)(µ)=𝑑L(G)(𝑣)=4, 2(𝑛-1) edges of type 𝑑L(G)(µ)=3, 𝑑L(G)(𝑣)=4, (𝑛-1) edges of type 
𝑑L(G)(µ)=3, 𝑑 L(G)(𝑣)=𝑛-1 and |𝐾𝑛-1| edges with 𝑑L(G)(µ)=𝑑L(G)(𝑣)=𝑛-1.

So, by Equation 2, we have  

1
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After an easy simplification, we obtain 1 4 12 2 3 3( ) (n 1)
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.

Lemma 5. Let Wn be the wheel graph with n vertices ( )2
nW  is the uniform 2-subdivision of the spokes of the wheel. Then, the 

edge version of geometric arithmetic index of ( )2
nW is given by: 
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Proof. By continuing an induction argument on n, one can check that in general, the line graph of ( )2
nW  has 5(𝑛 - 1) +|𝐾𝑛-1| 

edges. On the hand, there are (𝑛-1) edges of type 𝑑L(G)(µ)=𝑑L(G)(𝑣)=4, 2(𝑛–1) edges with 𝑑L(G)(µ)=3 & 𝑑L(G)(𝑣)=4, (𝑛-1) edges of type 
𝑑L(G)(µ)=2 & 𝑑L(G)(𝑣)=3, (𝑛-1) edges of type 𝑑L(G)(µ)=2, & 𝑑 L(G)(𝑣)=𝑛-1 and |𝐾𝑛-1| edges with 𝑑L(G)(µ)=𝑑L(G)(𝑣)=𝑛-1.

Since, 
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7 5 1 2e n

n nGA W
n

 −
= − + + +  + 

.

Theorem 3. Let Wn be the wheel graph with n vertices m
nW  is the uniform m -subdivision of the spokes of the wheel by m>2 

vertices. Then, the edge version of geometric arithmetic index of m
nW  is given as: 2 6 4 12 4 2 2 2( ) (n 1) (m 1)

5 7 1 2
m

e n
n nGA W

n
 − −

= − − + + +  + Proof. It is easy to see that the line graph of W𝑛𝑚 has (𝑚+3)(𝑛-1)+|𝐾𝑛-1| edges. On the hand, there are (𝑚-2)(𝑛-1) edges of 
type 𝑑L(G)(µ)=𝑑L(G)(𝑣)=2, (𝑛-1) edges of type 𝑑L(G)(µ)=2, 𝑑L(G)(𝑣)=3, (𝑛-1) edges of type 𝑑L(G)(µ)=3, 𝑑L(G)(𝑣)=4, (𝑛-1) edges of type 𝑑L(G)

(µ)= 𝑑L(G)(𝑣)=4, 2(𝑛-1) edges of type 𝑑L(G)(µ)=2, 𝑑L(G)(𝑣)=𝑛-1, and |𝐾𝑛-1| edges with 𝑑L(G)(µ)=𝑑L(G)(𝑣)=𝑛-1 .

Since, 
2

( ) ( )

( (G)) ( ) ( )

( ). ( )
(G)

( ) ( )
L G L G

e
E L L G L G

d d
GA

d dµν∈

µ ν
=

µ + ν∑ , this implies

2 (n 1)(n 1)2 2.2 2 2.3 2 3.4 2 4.4 2 2 2 (n 1)(n 2)(W ) (m 2)(n 1) ( 1) 2( 1) ( 1) ( 1)
2 2 2 3 3 4 4 4 2 1 2 (n 1) (n 1)

m
e n

nGA n n n n
n

           − −− − −
= − − + − + − + − + − +                      + + + + + − − + −           

After simplification, we obtain 2 6 4 12 4 2 2 2( ) (n 1) (m 1)
5 7 1 2

m
e n

n nGA W
n

 − −
= − − + + +  + 

.

Arbitrary Subdivision of Wheel Graph

In this subsection, we will give the edge version of the arbitrary subdivision of a wheel graph.

Lemma 6. Let W𝑛 be the wheel graph with 𝑛 vertices and 1
,1nW is the barycentric subdivision of the wheel graph Then 

1
,1

2 3 3 6( ) (n 1) (
2 2e n

n nGA W
n

 − +
= − +  + 

.
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Proof. By continuing an induction argument on n, one can check that in general, the line graph of 1
,1nW has 5(𝑛 - 1) +|𝐾𝑛-1 | 

edges. On the hand, there are 4(𝑛–1) edges with 𝑑L(G)(µ)=𝑑L(G)(𝑣)=3, (𝑛-1) edges of type 𝑑L(G)(µ)=3, 𝑑L(G)(𝑣)=𝑛-1 and |𝐾𝑛-1| edges 
with 𝑑L(G)(µ)=𝑑L(G)(𝑣)=𝑛-1.

Since, 
2

( ) ( )

( (G)) ( ) ( )

( ). ( )
(G)

( ) ( )
L G L G

e
E L L G L G

d d
GA

d dµν∈

µ ν
=

µ + ν∑ , this implies

1
,1

2 (n 1)(n 1)2 4.4 2 3 3 (n 1)(n 2)(W ) 4(n 1) ( 1)
4 4 3 1 2 (n 1) (n 1)e n

nGA n
n

     − −− − −
= − + − +          + + − − + −     

After an easy simplification, we obtain 1
,1

2 3 3 6(W ) (n 1)
2 2e n

n nGA
n

 − +
= − + 

+ 
.

Lemma 7. Let W𝑛 be the wheel graph with 𝑛 vertices and 2
,2nW is the 2-uniform subdivision of the wheel graph. Then  

2
( ) ( )

( (G)) ( ) ( )

( ). ( )
(G)

( ) ( )
L G L G

e
E L L G L G

d d
GA

d dµν∈

µ ν
=

µ + ν∑ .

Proof. By continuing an induction argument on n, one can check that in general, the line graph of W𝑛 has 7(𝑛-1) +|𝐾𝑛-1| edges. On 
the hand, there are 3(𝑛–1) edges with 𝑑L(G)(µ)=2,𝑑L(G)(𝑣)=3, 3(𝑛-1) edges of type 𝑑L(G)(µ)= 𝑑L(G)(𝑣)=3, (𝑛-1) edges of type 𝑑L(G)(µ)=2, 
𝑑L(G)(𝑣)=𝑛-1 and |𝐾𝑛-1| edges with 𝑑L(G)(µ)=𝑑L(G)(𝑣)=𝑛-1.

Since, 
2

( ) ( )

( (G)) ( ) ( )

( ). ( )
(G)

( ) ( )
L G L G

e
E L L G L G

d d
GA

d dµν∈

µ ν
=

µ + ν∑ , this implies

2
,2

2 (n 1)(n 1)2 2.3 2 3.3 2 2 2 (n 1)(n 2)(W ) 3(n 1) 3( 1) ( 1)
2 3 3 3 2 1 2 (n 1) (n 1)e n

nGA n n
n

       − −− − −
= − + − + − +              + + + − − + −       

After an easy simplification, we obtain 
,m

6 6 2 2 2 2(W ) (n 1) 2 1
5 1 2

m
e n

n nGA m
n

 − −
= − − + + + 

+ 
Theorem 4. Let Wn be the wheel graph with 𝑛 vertices and ,mWm

n is the uniform m>2 -subdivision of the wheel. Then, the edge 

version of geometric arithmetic index of ,mWm
n is given as 

 
,m

6 6 2 2 2 2(W ) (n 1) 2 1
5 1 2

m
e n

n nGA m
n

 − −
= − − + + + 

+ 
Proof. By continuing an induction argument on n, one can check that in general, the line graph of W𝑛 has (2𝑚+3)(𝑛-1)+|𝐾𝑛-1| 
edges. On the hand, there are 2(𝑚-2)(𝑛-1) edges of type 𝑑L(G)(µ)=𝑑L(G)(𝑣)=2, 3(𝑛-1) edges of type 𝑑L(G)(µ)=2, 𝑑L(G)(𝑣)=3, 3(𝑛-1) edges 
of type 𝑑L(G)(µ)= 𝑑L(G)(𝑣)=3, (𝑛-1) edges of type 𝑑L(G)(µ)=2, 𝑑L(G)(𝑣)=𝑛-1, and |𝐾𝑛-1| edges with 𝑑L(G)(µ)=𝑑L(G)(𝑣)=𝑛-1.

Since, 
2

( ) ( )

( (G)) ( ) ( )

( ). ( )
(G)

( ) ( )
L G L G

e
E L L G L G

d d
GA

d dµν∈

µ ν
=

µ + ν∑ , this implies

,m

2 (n 1)(n 1)2 2.2 2 2.3 2 3.3 2 2 1 (n 1)(n 2)(W ) 2(m 1)(n 1) 3( 1) 3( 1) ( 1)
2 2 2 3 3 3 2 1 2 (n 1) (n 1)

m
e n

nGA n n n
n

         − −− − −
= − − + − + − + − +                  + + + + − − + −         

After an easy simplification, we obtain 
,m

6 6 2 2 1 n 2(W ) (n 1) 2m 1
5 1 2

m
e n

nGA
n

 − −
= − − + + + 

+ 

Let 1 1
1 i i1 1

| E | (k 2) (l 2)n n

i t i s

− −

= + = +
= − + −∑ ∑ be a graph obtained from the subdivision of the edges of the wheel graph W𝑛 of order n, where, 𝑘𝑖=1, 

for each 𝑖=1,2,3,…,𝑡 and 𝑘𝑖 ≥ 2 for each 𝑖=𝑡+1,𝑡+2,…,𝑛-1, for the edges of cycle of the wheel and 𝑙𝑖=1, for each 𝑖=1,2,3,…,𝑠 and 
𝑙𝑖 ≥ 2 for each 𝑖=𝑠+1,𝑠+2,…,𝑛-1 for the spokes of the wheel.

The edge partitions of the graph G are as follows:

𝐸1= {µ𝑣∈𝐸(L(G)): 𝑑L(G)(µ)=𝑑L(G)(𝑣)=2}, so we have 
1 1

1 i i1 1
| E | (k 2) (l 2)n n

i t i s

− −

= + = +
= − + −∑ ∑

𝐸2= {µ𝑣∈𝐸(L(G)): 𝑑L(G)(µ)=2 & 𝑑L(G)(𝑣)=3}, so we have |𝐸2|=3(𝑛-1)-2𝑡-𝑠
𝐸3= {µ𝑣∈𝐸(L(G)): 𝑑L(G)(µ)=3 & 𝑑L(G)(𝑣)=3}, so we have |𝐸3|=3(𝑛-1)+𝑡
𝐸4= {µ𝑣∈𝐸(L(G)): 𝑑L(G)(µ)=2 & 𝑑L(G)(𝑣)=𝑛-1}, so we have |𝐸4|=(𝑛-1)-𝑠
𝐸5= {µ𝑣∈𝐸(L(G)): 𝑑L(G)(µ)=3 & 𝑑L(G)(𝑣)=𝑛-1}, so we have |𝐸5|=𝑠
𝐸6= {µ𝑣∈𝐸(L(G)): 𝑑L(G)(µ)=𝑑L(G)(𝑣)=𝑛-1}, so we have |𝐸6|=|𝐾𝑛-1|.

Example 12. Let 1,2,3,4
5,1,1,2,3W be the graph obtained by the subdivision of the wheel of order 5 as depicted in  Figure 3. Then
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1
5,1

4 12 2 6 8 5(W ) 4
7 5 3 2eGA

 
= + + + 

 

Figure 3. 1,2,3,4
5,1,1,2,3W  and its line graph is L( 1,2,3,4

5,1,1,2,3W ) in red color.

Theorem 5. Let 1 2 3 1

1 2 3 1

, , ,....,,
,k ,k ,k ,....,,k

n

n

l l l l
nG W −

−
= be a graph obtained from the subdivision of a wheel graph. Then, the edge version of 

geometric arithmetic index of G is given as: 1 1

i i
1 1

5 4 6 4 3 2 4 6( ) (k 2) (k 2) (n 1) 1
5 3 2 5

n n

e
i t i t

n nGA G t
n

− −

= + = +

   − −
= − + − + + − + + +      +   
∑ ∑

Proof. From Equation 1, we get

1 1

i i
1 1

5 4 6 3 3 2 2 2 6 6 6 6 2 2 2 4( ) (k 2) (l 2) 2 (n 1)
5 2 1 5 5 1 2

n n

e
i t i s

n n n nGA G t s
n n n

− −

= + = +

     − − − − +
= − + − + + − − + − + +          + + +     
∑ ∑

Using the cardinalities of the edge partitions and after simplifications, we get
1 1

i i
1 1

5 4 6 3 3 2 2 2 6 6 6 6 2 2 2 4( ) (k 2) (l 2) 2 (n 1)
5 2 1 5 5 1 2

n n

e
i t i s

n n n nGA G t s
n n n

− −

= + = +

     − − − − +
= − + − + + − − + − + +          + + +     
∑ ∑

CONCLUSION
In Theoretical Chemistry, the topological indices and molecular structure descriptors are used for modeling physicochemical, 

toxicological, biological, and other properties of chemical compounds. In recent years, some researchers are interested in studying 
the topological indices of certain nanotubes and nanotori, for example, see [21,22]. In this paper, we have investigated the new 
version of the geometric arithmetic index of arbitrary subdivisions of a wheel graph of order n.
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