
Volume 6, No. 8, August 2015
Journal of Global Research in Computer Science

RESEARCH PAPER

1© JGRCS 2015, All Rights Reserved

http://rroij.com/global-research-in-computer-science.php

ISSN-2229-371X

Mathematica: A System of Computer Programs
Santanu K. Maiti

Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata-700108
 santanu.maiti@isical.ac.in

INTRODUCTION

Mathematica, a system of computer programs, is a high-level
computing environment including computer algebra, graphics
and programming. Mathematica is specially suitable for
mathematics, since it incorporates symbolic manipulation and
automates many mathematical operations. The key intellectual
aspect of Mathematica is the invention of a new kind of symbolic
computation language that can manipulate the very wide range
of objects needed to achieve the generality required for technical
computing by using a very small number of basic primitives.
Just a single line sometimes makes a meaningful program in
mathematica–the syntax, documents and methodology used
for input and output remaining as they are for immediate
calculations. It supports every type of operation–be they data,
functions, graphics, programs, or even complete documents–
to be represented in a single, uniform way as a symbolic
expression. This unification has many practical benefits to
broadening the scope of applicability of each function. The raw
algorithmic power of mathematica is magnified and its utility
extended. Mathematica is now emerging as an important tool
in many branches of computing, and today it stands as the
world’s best system for general computation. Mathematica
has widespread applications in different fields and is often
used for research, loading and analyzing data, giving technical
presentations and seminars etc. Mathematica is extraordinary
well-rounded. It is suitable for both numeric and symbolic

work, and it has remarkable word-processing capabilities
as well. Mathematicians can search for a working model, do
intensive calculation, and write a dissertation on the project
(including complex graphics) – all from within mathematica. It
is mathematica’s complete consistency in design at every stage
that gives it this multilevel capability and helps advanced usage
evolve naturally.

START WITH MATHEMATICA

We generally use mathematica through documents called
notebooks. To start a mathematica notebook in Unix we write
‘mathematica &’ from a command line and then press the ‘Enter’
key from the key-board. A typical notebook consists of cells that
may contain graphics, texts, programs or calculations. Now to
exit from a mathematica notebook we first go to the command
‘File’ and then press ‘Quit’ from the menu bar of the notebook.
Without using a notebook one can also use mathematica by
typing the command ‘math’ from a command line and all the jobs

can also be done as well. To exit from mathematica for this
particular case, we should write either ‘Exit’ or ‘Quit’ and then
press the ‘Enter’ key. Thus one can run mathematica by using
any one of the above two ways, but the most general way to
do the interactive calculations in mathematica is the use of
mathematica through notebook documents.

Use of a Mathematica Notebook

In a notebook, a job is performed in a particular cell and for

Abstract: Mathematica is a powerful application package for doing mathematics and is used almost in all branches of science.
It has widespread applications ranging from quantum computation, statistical analysis, number theory, zoology, astronomy, and
many more. Mathematica gives a rich set of programming extensions to its end-user language, and it permits us to write programs
in procedural, functional, or logic (rule-based) style, or a mixture of all three. For tasks requiring interfaces to the external
environment, mathematica provides mathlink, which allows us to communicate mathematica programs with external programs
written in C, C++, F77, F90, F95, Java, or other languages. It has also extensive capabilities for editing graphics, equations, text,
etc. Starting from the basic level of mathematica here we illustrate how to use a mathematica notebook and write a program in the
notebook. Following with this, we also describe very briefly about the importance of the local and global variables those are used
in writing programs in mathematica. Next, we investigate elaborately the way of linking of external programs with mathematica,
so-called the mathlink operation. Using this technique we can run very tedious jobs quite efficiently, and the operations become
extremely fast. Sometimes it is quite desirable to run jobs in background of a computer which can take considerable amount of
time to finish, and this allows us to do work on other tasks, while keeping the jobs running. The way of running jobs, written in a
mathematica notebook, in background is quite different from the conventional methods i.e., the techniques for the programs written
in other languages like C, C++, F77, F90, F95, etc. To illustrate it, in the present article we study how to create a mathematica
batch-file from a mathematica notebook and run it in the background. Finally, we explore the most significant issue of this article.
Here we describe the basic ideas for parallelizing a mathematica program by sharing its independent parts into all other remote
computers available in the network. Doing the parallelization, we can perform large computational operations within a very short
period of time, and therefore, the efficiency of the numerical works can be achieved. Parallel computation supports any version of
mathematica and it also works significantly well even if different versions of mathematica are installed in different computers. All
the operations studied in this article run under any supported operating system like Unix, Windows, Macintosh, etc. For the sake of
our illustrations, here we concentrate all the discussions only for the Unix based operating system.

2© JGRCS 2015, All Rights Reserved

Santanu K. Maiti, Journal of Global Research in Computer Science, 6(8), August 2015

different jobs we use different cells. One can also use a single cell
for all the operations, but it is quite easy if different operations
are performed in separate cells. A cell is automatically created
when we begin to write anything in the notebook. After writing
proper operation/operations, it is needed to run the jobs. For this
purpose, we press the key ‘Shift’ and holding this key, we then
press ‘Enter’ from the key-board. The results for the inputs are
evaluated and they are available immediately underneath in a
separate cell, so-called the output cell.

In mathematica we can do all kind of mathematical operations
like numerical computation, algebric computation, matrix
manipulation, different types of graphics etc., and all these things
are clearly described by several examples in key mathematica
book of Wolfram Research [1]. So in this article we shall not
give any such example further. Now to do large numerical
computations, it is needed to write a complete program. For this
purpose, here we describe something about the way of writing a
complete program in a mathematica notebook.

Way of Writing a Program in Mathematica

In mathematica, we can write a program efficiently compared to
any other existing languages. As illustrative example, here we
mention a very simple program which is: the generation of a list
of two random numbers and the creation of a 2D plot from these
numbers. The program is:

This is the complete program for the generation of a list of
two random numbers and the creation of a 2D plot from these
numbers. This program is written in a single cell. After the end
of this program we run it by using the command ‘SHIFT’ +
‘ENTER’, and then the mathematica does the proper operations
and executes the result in an output cell (Figure 1).

Now to understand this program, it is necessary to describe the
meaning of the different commands used in this program. To
start a program it is necessary to specify a name for the particular
program. In this case, we specify ‘sample’ as a program name, for
the sake of simplicity. One can also use any other name in place
of ‘sample’, since this is a dummy name. If there is any running
variable, like ‘times’ (a dummy variable) in this particular case,
then it has to be given within the bracket ‘[]’. After that the
symbol ‘_’ is used, which indicates the variable as a functional
variable. This is similar to define a functional variable, like f[x]

as f[x_] in mathematica. Now all the mathematical commands
those are used for calculating the job are inserted within ‘Block
[. . .]’. This is the central part of the program. This portion i.e.,
‘Block[. . .]’ is connected with ‘sample[times_]’ by the symbols
‘:=’. The symbol ‘:’ has an important role, and therefore it has
to be taken into account properly. Inside the ‘Block’ the ‘local
variables’ for the program are declared within the bracket ‘{ }’.
There may also exist another type of variables called ‘global
variables’. Later in this article, we will focus about these two
different types of variables in detail. Now the rest part of the
program differs from program to program depending on the
nature of the particular operations. In this program, first we
construct a list of two random numbers. In mathematica, a
random number is generated simply by using the command
‘Random[]’. Therefore, a list of two such random numbers can
be done very easily if we construct a table, which is performed
by the command ‘Table’ as given in the program. The integer
i runs from 1 to ‘times’, where the value of ‘times’ can be put
anything. So if we write ‘sample[10]’, here ‘times = 10’, then
i runs from 1 to 10 and if we take ‘sample[30]’, where ‘times
= 30’, then i goes from 1 to 30. Now it becomes quite user
friendly if we mention different variable names for the different
mathematical operations which are not exactly identical with
any built in function available in mathematica like ‘Random’,
‘Table’, ‘Plot’, etc. In this program we use the variable names
‘numbers’ and ‘figure’ for the two different operations. At the
end of each mathematical operation, except the last operation
which gives the final output of a program, we put the symbol
‘;’. This is also very crucial. Here we use the symbol ‘;’ at the
end of the second line only, but not in the last operation since
this is the final output of this program. The command ‘ListPlot’
plots the list of data points where the command ‘PlotJoined
->True’ connects the lines between the data points. Finally, the
command ‘AxesLabel’ in this line is an option for the graphics
functions to specify the labels in the axes.

The output for this program is shown in Fig. 1, which appears
in a separate cell just below the input cell of the program. So
now we can easily write and compile a program in mathematica.

Characterization of Local and Global Variables

The local and global variables in mathematica play an important
role, and therefore care should be taken about these two types
of variables when we write a program in mathematica. We have
already mentioned about the local variables in the previous
section that these variables are introduced only inside the
bracket ‘{ }’ at the beginning of the ‘Block[]’. In such a case,
the values of these parameters are only defined within the cell
where we write a particular program. Outside this cell, they are
undefined and therefore, we may also use these same parameters
for writing other programs without any trouble.

On the other hand, the global variables are those which are not
used within the bracket ‘{ }’ of a program. For such a case,
these variables are assigned throughout the notebook for all
cells. Thus if we declare any value for a such parameter, then
it will read this particular value whenever we use it in any
program. Accordingly, it may cause a difficulty if we use the
same variable in another program by mistake. So we should
take care about these two types of variables. To make it clear,

sample[times_]:=Block[{localvariables},
 numbers=Table[{Random[], Random[]}, {i, 1,

times}]; figure=ListPlot[numbers, PlotJoined→True,
AxesLabel→{xlabel, ylabel}]]

Figure 1: A 2D plot for a set of two random numbers.

3© JGRCS 2015, All Rights Reserved

Santanu K. Maiti, Journal of Global Research in Computer Science, 6(8), August 2015

here we illustrate the behavior of these two different kinds of
variables by giving proper examples.

Let us consider the above program which is written in a
particular cell in the mathematica notebook. In this program, we
introduce two local variables t = 2.3 and p = −1.5. Both these
two variables are given inside the bracket ‘{ }’. Now if we check
the values outside the cell then the output will be simply t and
p for these two variables. So these are the local variables and
one can safely use these parameters again in other programs.

Now we refer to this program where we introduce an extra line
for another variable q = 3.5 compared to the previous program
of this section. Once we run this program, the value of q will be
assigned for any cell of the notebook. Therefore, in this case q
becomes the global variable, and if one uses it further in other
program then the value of this parameter q will be assigned as
3.5. Hence a mismatch will occur, and thus we should be very
careful about these two different types of parameters.

WAY TO LINK EXTERNAL PROGRAMS IN
MATHEMATICA BY PROPER MATH-LINK COMMANDS

This section illustrates an important part of this article which
deals with the way of linking of an external program with
mathematica through proper mathlink commands. The
mechanism for the linking of external program written in C
with mathematica has already been established [2]. But this
will not work if one tries to link an external program written in
other languages like F77, F90, F95, etc., with mathematica. This
motivates us to find a way of linking an external program written
either in any one of these later languages (F77, F90, F95) with
mathematica. Here we illustrate it for the FORTRAN-90 source
files [3, 4] only, but this mechanism will also work significantly
for the other Fortran source files as well.

Mathlink for XL Fortran-90 Source Files

In order to understand the basic mechanism for linking an
external program with mathematica, let us begin by giving a
simple example. Here we set the program as follows:

1. Construct two square matrices in mathematica.

2. Take the product of these two matrices by using an
external program written in F90.

3. Calculate the eigenvalues of the product matrix in
mathematica.

The whole operations can be pictorially represented as,

The operations 1 and 3 are performed in mathematica, while
the operation 2 is evaluated by the external program. The
transformations of the datas from the mathematica notebook
to the external program are done by using some proper
commands, so-called mathlink operation. To complete this
particular job (operations 1-3), we need two programs. One is

written in mathematica for the operations 1 and 3, while the
other program is written in F90 for the operation 2. Now we
describe all these steps one by one. Let us first concentrate on
the external program, given below, where the multiplication of
the two square matrices (operation 2) is performed. The first
line of the program corresponds to the command line where the
symbol ‘!’ is used to make a statement as a command statement.
The next line provides a specific name of the program which
is described by the command ‘program multiplication’. This
actually starts the program, and accordingly, the program is
ended by the command ‘end program multiplication’. In F90,
we can allocate and deallocate array variables in the programs
which help us a lot to save memory and are very essential to run
many jobs simultaneously. Here we use three array variables
‘a, b and c’ for the three different matrices whose dimensions
are allocated by the order of the matrix ‘n’. Finally, the product
of the two matrices ‘a’ and ‘b’ is determined by the command
‘matmul (a,b)’ and the datas are stored in the matrix ‘c’. This is
the full program for the matrix multiplication of any two square
matrices of order ‘n’.

Compilation and Optimization of XL Fortran-90 Source Files

After writing a program, first we need to compile it to check
whether there is any syntax error or not to proceed for further
operations. Several commands are accessible for the compilation
and optimization of a program. The commands generally used
to compile a F90 source file are: xlf90, xlf90_r, xlf90_r7, etc.
Thus we can use anyone of these to compile this program,
but different commands optimize a program in different ways
which solely depends on the nature of the particular program.
The simplest way for the compilation of a program is,

With this operation, an ‘executable file’ named ‘a.out’ is created,
by default, in the present working directory (pwd). But if one
uses several programs simultaneously then it would be much
better to specify different names of different ‘executable files’
for separate programs. To do this we use the prescription,

Under this process, the ‘executive file’ named as ‘filename’ is

Figure 2: Schematic representation of mathlink operations.

4© JGRCS 2015, All Rights Reserved

Santanu K. Maiti, Journal of Global Research in Computer Science, 6(8), August 2015

created. Thus we can create proper ‘executive files’ for different
jobs and all the jobs can be performed simultaneously without
any difficulty.

For our illustrative purposes, below we mention some other
optimization techniques for the Fortran source files.

• -o : Optimizes code generated by the compiler.

• -o0 : Performs no optimizations. (It is the same as -qnoopt.)

• -o2 : Optimizes code (this is the same as -O).

• -o3 : Performs the -O level optimizations and performs
additional optimizations that are

memory or compile time intensive.

• -o4 : Aggressively optimizes the source program, trading off
additional compile time for

potential improvements in the generated code. This option
implies the following options:

-qarch=auto -qtune=auto -qcache=auto -qhot -qipa.

• -o5 : Same as -O4, but also implies the -qipa=level=2 option.

From these operations, we can make some flavors about the
compilation and optimization technique for a Fortran source
file. For a detailed description of each operation, we refer to the
XL Fortran User’s Guide [5].

Link of XL Fortran-90 Program with Mathematica

This is the heart of this article. Below we set the mathematica
program for the operations 1 and 3, incorporating the operation
2 by using the proper mathlink commands, and illustrate all the
steps properly (Figure 2).

Let us suppose the external program, for the operation 2, is written
in the directory ‘/allibmusers/santanu/files/test’. Generally we are
habituated to see the working directory as ‘/user/santanu/...’ or ‘/
home/santanu/...’ or ‘/allusers/santanu/...’, etc. So it can be anything
like these. Thus knowing the directory where the external program
is written, we enter into that particular directory and compile the
external program properly to create an ‘executive file’ for further
operations. For this particular case, we create the ‘executive file’
named as ‘mat’ which is used in the 13-th line of the following
mathematica program. Now the external program is ready for the
operation, and we enter into the directory where we will run the job
in the mathematica notebook for the operations 1 and 3.

Sitting in the directory where the mathematica notebook is open,
we need to connect the proper directory where the ‘executive
file’ for the external program exists. The name of the pwd can
be checked directly from the mathematica notebook by using the
command ‘Directory[]’. Suppose the pwd is ‘/allibmusers/santanu/
math’. Now If this pwd is different from the directory where the
file ‘mat’ exists, then we make a link to that particular directory
through the command ‘SetDirectory’. Below we give an example
to connect the directory ‘/allibmusers/santanu/files/test’, where the
file ‘mat’ exists.

For this operation, the total path must be used within the double
quotes “”. Using the command ‘ResetDirectory[]’, we can come
back to the initial directory. Thus we can connect and disconnect
any directory with the pwd from the mathematica notebook, and
able to link external programs with mathematica very easily.

In the above program, the variables ‘t’ and ‘s’ are the local
variables, and we have already discussed about these variables
in the previous section. ‘vacuum1={}’ and ‘vacuum2={}’ are
the two empty lists where the datas are stored for each operation
of the two ‘DO’ loops given in the program to make the lists
‘a2’ and ‘a4’ respectively. The ‘Partition’ command makes the
partition of a list. The parameter ‘ns’ gives the order of the two
square matrices. By using the command ‘Export’ we send the
file ‘mat3.dat’ which is treated as the input file for the external
program kept in the directory ‘/allibmusers/santanu/files/test’. To
perform the matrix multiplication by using the external program
and get back the product matrix in the mathematica notebook
we use the operation: ReadList[“!mat<mat3.dat”, Number,
RecordLists->True]. Here the command ‘ReadLeast’ is used to
read the objects from a file and the commands ‘Number’ and
‘RecordLists!True’ are the options of the command ‘ReadList’.
Finally, the eigenvalues of the matrix in the mathematica
notebook are determined by using the command ‘Eigenvalues’.

Link of other XL Fortran Programs with Mathematica

Now we can also use the mathlink operations for other programs
written either in F77 or F95 by the above mechanisms. For these
programs, we should use proper commands for the compilations
and optimizations. As representative example, here we mention
some of the commands for the compilation of these XL Fortran
source files those are: xlf, f77, fort77, xlf_r, xlf_r7, xlf95,
xlf95_r and xlf95_r7.

So now we can able to use mathlink commands for any type of
Fortran program.

WAY TO CREATE A MATHEMATICA BATCH-FILE
AND RUN IT IN BACKGROUND

In the above section, we have studied in detail how to start
mathematica, write programs in mathematica and the way of
linking of external programs with a mathematica notebook
by using proper mathlink commands. Now it may be quite
desirable to run jobs in background which take much time to
finish, and to do other works in separate windows, keeping the
jobs running. This motivates us to explore the basic mechanisms
for running mathematica programs in background. It can be
done by creating proper mathematica batch-file which we will
describe here elaborately.

5© JGRCS 2015, All Rights Reserved

Santanu K. Maiti, Journal of Global Research in Computer Science, 6(8), August 2015

In order to understand the complete process, let us start by
giving a very simple example of a mathematica program. We
set the program as follows:

The generation of a list of two random numbers, a 2D plot from
these set of random numbers and then the creation of an ‘EPS’
file for this 2D plot.

For this program, first we need to make a list of two random
numbers and then construct a 2D plot using this set of random
numbers. Finally, we make an ‘EPS’ file for this plot. Here, we
are mainly interested to run this complete job in background.
Before doing this job in background, let us now describe the
different mathematical operations with proper commands which
are to be done in a mathematica notebook for this particular
operation.

The program for the generation of a set of two random numbers
and a 2D plot from these numbers is as follows:

To get the output of this program, we run it by entering some value
for the variable ‘times’, like ‘sample[100]’ or ‘sample[200]’ etc.
Then the mathematica does the proper operations and executes
the result in an output cell (Figure 3). The output of the 2D plot
is shown in Figure 1.

Now to create an ‘EPS’ file for this 2D plot we use the following
operation:

In this above expression, the name ‘fig’ is used to call the
graphics file, and the ‘eps’ file is saved by the name ‘filename.
eps’ in the present working directory.

Thus we are now clear about all the mathematical operations
those are to be done in a mathematica notebook for the above
mentioned program. So now we make our attention for running
this program in background.

In order to run this program in background, first we need to create
a batch-file which is a text file from these mathematica input
commands those are written in different cells of a mathematica
notebook. For this purpose, we go through these steps:

(a) Select the cells from the mathematica notebook, and then
follow the direction by clicking on Cell→ Cell Properties→
Initialization Cell from the menu bar to initialize the cells.

(b) To generate the batch-file, follow the direction by clicking on
File→ Save As Special→ Package Format from the menu bar.

Then a dialog box appears for specifying the file name and the
location of the mathematica input file. Here we use the input file
for the operation of the mathematica job.

After these steps, let us suppose, we generate a batch-file
named as ‘santanu.m’ for the above mathematica program.
Generally the batch-files for this purpose are specified by using
the extension ‘.m’ i.e., like the name as ‘filename.m’. To run
this batch-file ‘santanu.m’ in background, we use the following
prescription:

The file name ‘santanu.out’ is the output file, where all the
outputs for the different operations are available. To get both
the input and output lines of the mathematica notebook, it is
necessary to use the following command in the first line of the
notebook.

At the end of all these steps, we get the output file ‘santanu.
out’ and the graphics file ‘filename.eps’ in ‘EPS’ format in the
present working directory where the batch-file ‘santanu.m’ is
run in the background.

PARALLEL EVALUATION OF MATHEMATICA
PROGRAMS

Parallelization is a form of computation in which one can perform
many operations simultaneously. Parallel computation uses
multiple processing elements simultaneously to finish a particular
job. This is accomplished by breaking the job into independent
parts so that each processing element can execute its part of the
algorithm simultaneously with the others. The processing elements
can be diverse and include resources such as a single computer with
multiple processors, several networked computers, specialized
hardware, or any combination of the above.

In this section, we narrate the basic mechanisms for parallelizing
a mathematica program by running its independent parts in
several computers available in the network. Since all the basic
mathematical operations are performed quite nicely in any
version of mathematica, it does not matter even if different
versions of mathematica are installed in different computers
those are required for the parallel computing.

How to Open Mathematica Slaves in Local Computer?

In parallel computation, different segments of a job are computed
simultaneously. These operations can be performed either in a
local computer or in remote computers available in the network.
Separate operations are exhibited in separate mathematica
slaves. In order to emphasize the basic mechanisms, let us now
describe the way of starting a mathematica slave in a local
computer. To do this, first we load the following package in a
mathematica notebook.

To enable optional features, then we load the package,

Figure 3: A 2D plot for a set of two random numbers.

6© JGRCS 2015, All Rights Reserved

Santanu K. Maiti, Journal of Global Research in Computer Science, 6(8), August 2015

Now we can open a mathematica slave in the local computer by
using the command,

Using this command, several mathematica slaves can be started
from the master slave. Now it becomes much more significant
if we specify the names of different slaves so that independent
parts of a job can be shared into different slaves appropriately.
For our illustrations, below we give some examples how
different slaves can be started with specific names.

Here link1, link2 and link3 correspond to the three different
slaves. The details of these slaves can be available by using the
following command,

The output of the above command becomes (as an example),

The results shown in this table are for the above three slaves
named as link1, link2 and link3 respectively, where all these
slaves are opened from the local computer named as ‘tcmpibm’
(say). To get the information about the total number of slaves
those are opened, we use the command,

For this case, the total number of slaves becomes 3.

How to Open Mathematica Slaves in Remote Computers
Available in Network?

To start a slave in remote computer, the command ‘ssh’ is used
which offers secure cryptographic authentication and encryption
of the communication between the local and remote computer.
Before starting a slave in a remote computer, it is necessary to
check whether ‘ssh’ is properly configured or not, and this can
be done by using the prescription,

For example, if we want to connect a remote computer named as
‘tcmpxeon’, we should follow the command as,

Since ‘ssh’ connection for a remote computer is password
protected, it is needed to insert proper password, and if ‘ssh’ is
configured correctly, the above operation shows the command
‘In[1]:=’. Once ‘ssh’ works correctly, a mathematica slave can
be opened in a remote computer through this command,

For our illustrative purposes, below we describe how different
slaves with proper names can be started in different remote
computers.

Here link1, link2, link3 and link4 are the four different slaves,
where the link1 and link3 are opened in a remote computer
named as ‘tcmpxeon’ (say), while the other two slaves are
started in another one remote computer named as ‘tcmp441d’
(say). Using this prescription, several mathematica slaves can be
started in different remote computers available in the network.
The details of the above four slaves can be expressed in the
tabular form as,

Thus we are now able to start mathematica slaves in local
computer as well as in remote computers available in the
network, and with this above background, we can describe the
mechanisms for parallelizing a mathematica program.

Parallelizing of Mathematica Programs by using Remote
Computers Available in Network

In order to understand the basic mechanisms of parallelizing a
mathematica program, let us begin with a very simple problem.
We set the problem as follows:

Problem: Construct a square matrix of any order in a local
computer and two other square matrices of the same order with
the previous one in two different remote computers. From the
local computer, read these two matrices those are constructed
in the two remote computers. Finally, take the product of these
three matrices and calculate the eigenvalues of the product
matrix in the local computer.

To solve this problem we proceed through these steps in a
mathematica notebook.

Step-1: For the sake of simplicity, let us first define the names
of the three different computers those are needed to solve this
problem. The local computer is named as ‘tcmpibm’, while the
names of the other two remote computers are as ‘tcmpxeon’ and
‘tcmp441d’ respectively. Opening a mathematica notebook in the
local computer, let us first load the package for parallelization,
and to get the optional features, we load another one package as
mentioned earlier. Then we start two mathematica slaves named
as ‘link1’ and ‘link2’ in the two remote computers ‘tcmpxeon’
and ‘tcmp441d’ respectively by using the proper commands as
discussed above.

Step-2: Next we make ready three programs for the three
separate square matrices of same order in the local computer.
Out of which one program will run in the local computer, while
the rest two will run in the two remote computers. These three
programs are as follows.

7© JGRCS 2015, All Rights Reserved

Santanu K. Maiti, Journal of Global Research in Computer Science, 6(8), August 2015

Since we are quite familiar about the way of writing mathematica
programs [1], we do not describe here the meaning of the
different symbols used in the above three programs further.
Thus by using these programs, we can construct three separate
square matrices of order ‘ns’.

Step-3: We are quite at the end of our complete operation. For the
sake of simplicity, we assume that, the program-I is evaluated
in the local computer, while the program-II and program-III are
evaluated in the two remote computers respectively. All these
three programs run simultaneously in three different computers.
To understand the basic mechanisms, let us follow the program.

This is the final program. When it runs in the local computer, one
matrix called as ‘mat1’ is evaluated in the local computer (3rd
line of the program), and the other two matrices are determined
in the remote computers by using the operations given in the
4th and 5th lines of the program respectively. The 2nd line of
the program gives the command for the transformations of all
the symbols and definitions to the remote computers. After the
completion of the operations in remote computers, we call back
these two matrices in the local computer by using the command
‘ReadList’, and store them in ‘mat2’ and ‘mat3’ respectively.
Finally, we take the product of these three matrices and calculate
the eigenvalues of the product matrix in the local computer by
using the rest operations of the above program.

The whole operations can be pictorially represented in Figure 4.

At the end of all the operations, we close all the mathematica
slaves by using the following command.

CONCLUDING REMARKS

In summary, the basic operations presented in this communication
may be quite helpful for the beginners. Starting from the basic
level, we have explored how to start mathematica, open a
mathematica notebook, write a program in mathematica, etc.
Following with this, we have also described the utilities of the
local and global variables those are used for writing programs
in mathematica.

Later, we have illustrated the basic mechanisms for the linking
of external programs with mathematica notebook. This mathlink
operation is an important part of this article, and it is extremely
crucial for doing large numerical computations. Here we have
concentrated the mathlink operation mainly for the XL Fortran
90 source files. But this operation can also be used for any other
Fortran source file. In this section, we have also illustrated very
briefly about the optimization techniques for the Fortran source
files which may help us to run very complicated jobs quite
efficiently.

Next we have addressed in detail how to set up a mathematica
batch-file from a mathematica notebook and run it in the
background of a computer. Several programs are there which
can take a considerable amount of time to run. Some may
take few days or even few weeks to complete their analysis.
For this reason, it may be desirable to place such jobs in the
background. This is a way of running a program that allows one
to continue working on other tasks (or even log out) while still
keeping the program running. Furthermore, backgrounded jobs
are not dependent on our session remaining open, so even if our
computer crashes, the job will continue uninterrupted.

At the end, we have explored the basic mechanisms for
parallelizing a mathematica program by running its independent
parts in remote computers available in the network. By using this
parallelization technique, one can enhance the efficiency of the
numerical works, and it helps us to perform all the mathematical
operations within a very short period of time.

Throughout this article, we have focused all the basic operations
for the Unix based operating system only. But all these
operations also work very well in any other supported operating
system like Windows, Macintosh, etc.

ACKNOWLEDGMENT

I acknowledge with deep sense of gratitude the illuminating
comments and suggestions I have received from Prof. Sachindra
Nath Karmakar during the preparation of this article.

REFERENCES

[1]	 Stephen Wolfram. Mathematica-5.0.

[2]	 Roman E. Maeder. About Parallel Computing Toolkit. A
Wolfram Research Application Package.

Figure 4: Schematic representation of parallelization.

8© JGRCS 2015, All Rights Reserved

Santanu K. Maiti, Journal of Global Research in Computer Science, 6(8), August 2015

[3]	 IM Smith, “Programming in Fortran 90: A First Course for
Engineers and Scientists,” University of Manchester, UK,
Vol. 1, 1994.

[4]	 Martin Counihan. Fortran 90. University of Southampton.

[5]	 IBM. XL Fortran for AIX : User’s Guide.

