
Volume 5, No. 2, February 2014

Journal of Global Research in Computer Science

REVIEW ARTICLE

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 24

MATHEMATICAL DESCRIPTION OF VARIABLES, POINTERS, STRUCTURES,

UNIONS USED IN C-TYPE LANGUAGE

Manoj Kumar Srivastava*, Asoke Nath
Indira Gandhi National Open University*, Department of Computer Science

St. Xavier‟s College (Autonomous) Kolkata India

*mksrivastav2011@rediffmail, asokejoy1@gmail.com

Abstract: Nath et al already have published a paper on mathematical description of keywords, variable declarations, arrays, user defined

functions of c-type language. The authors have given the definition of variables, array initialization, calling a function from simple mathematical

derivations or mathematical models. The authors have already shown that it is possible to conceptualize any high level language from

mathematical derivations or mathematical models. In the present paper the authors tried to explore some of the important concepts of c-type

language such as Pointers, structures, unions and variable declarations in c-type language. The structure is a complex data type and hence the

authors tried to apply some simple mathematical logic or model to explain structure. Pointer is also one important concept in c-language and the

authors have tried to explain it from simple mathematical models. The authors tried to establish that there is one to one mathematical logic or

model for each component of any high level language. The present method may be further extended to other high level language, scripting

language or object oriented language, database management systems etc.

Keywords: [c-type language , pointer, structure, mathematical logic]

INTRODUCTION

The language „C‟ comprises of variables, data types, control

statements, loop statements, subscripted variable of arrays,

functions, strings, files, pointers, structures, unions, bit field,

bit-wise operators, c-pre processor directives, c-unix

interface etc. Nath et al [1] tried to explain mathematically

the meaning of different data types, different control

statements, arrays with some specific example. In the

present paper the authors tried to explore the idea of

pointers, structures , unions and variables using simple

mathematical models. The same idea may be extended in

future to design any new high level language. In C-

language pointers means a special type of variables which

can store the address of another variable. Structure is a

derived data type where one can define various data types in

the same structure. Union is a type where different data

types will share the same memory locations. It is bit

complex process as different data type will read data from

same location. In present paper the authors tried to explore

several common features such as control statements, loop

statements, input and output functions or statement,

relational operators, logical operators, different data types,

arrays, pointer type variable, string operations, functions,

subprograms or subroutines etc. In object oriented language

there are something extra such as class, object, inheritance,

polymorphism, data encapsulation etc.

The syntax of a particular statement may be different in two

different languages but the purpose of the statement is the

same. The authors tried to explain the different statements

using some unified mathematical model. In the present

paper the authors considered pointers, structures, unions of c

language using simple mathematical model. The

mathematical modeling of programming language such as

C-language will help the user to understand a high level

language much better. The authors also propose that the

similar mathematical description can be applied to any other

new language with minor revisions.

DIFFERENT MATHEMATICAL MODELS

In mathematics, a variable is a symbol designated a value

that may change within the scope of a given set of problem

or set of operation.

A variable is simply a symbol which is or may be associated

to some value(s).

Variables are further divided into two categories:

(i) Dependent Variable

(ii) Independent Variable.

Independent Variables are regarded as input to a system and

may take on different value freely.

Dependent Variables are those value that changes as a

consequence of changes in other values in the systems.

A variable is just a named area of storage that can hold a

single value(numeric or character).The C language demands

that you declare the name of each variable that you are

going to use its type.

The general symbol used to represent a variable is x, y, z, p,

q, r…….etc. Now we are using a special symbol to represent

the variable in the form

*x,*y,*z,*i,*j,*k,…………………..etc. The difference

between the symbol x and *x is that first x is used to

represent address of a variable which points to some definite

type of data and *x is the value where „x‟ is pointing.

a. Pointer: A pointer is a variable that stores memory

address. Like all other variable it also has a name ,

has to be declared and occupies some fixed space

in memory . It is called pointer because it points to

Manoj Kumar Srivastava et al, Journal of Global Research in Computer Science, 5 (2), February 2014, 24-29

© JGRCS 2010, All Rights Reserved 25

a particular location in memory by storing the

address of that location.

To represent pointer in mathematical term we are taking two

sets as follows :

S = { v Data : v contains the value of the variable}

X = { a Data : a contains the address of the variable}

 we are taking the mapping T:S  X such that T(v)=a for v

S and a X.

In the programming language C, a pointer is a variable

itself; which stores the address of another variable of some

specific type. Address of a variable is given by ampersand

notation(&),which is called the unary operator or address

operator that evaluates address of its operand. Here address

of variable is dependent on the value of the address.

Example:

#include<stdio.h>

void main()

{

int *a, *b, *c /*Here a,b,c are three pointer

pointing to some integer data */

int i=10, j=20,k=30;

a=&i ; / *a=Address of i*/

b=&j ; /*b=Address of j */

c=&k ; /*c=Address of k*/

clrscr();

printf(“Address of i=%x value of i=%d\n”,a,*a);

printf(“Address of j=%x value of j=%d\n”,b,*b);

printf(“Address of k=%x value of k=%d\n”,c,*c);

getch();

}

If we take the above example in mathematical form it will

be as follows: We take a mapping

T: SX where

S={i=10,j=20,k=30} and

X={a,b,c}

T(i)=a

 =&i;

T(j)=b

 =&j;

and T(k)=c

 =&k; The above mapping is one-one and onto also.

Properties for memory organization for pointer variable:

(i) When we use variable in a program then compiler

keeps some memory for that variable depending on

that data type.

(ii) The address given to that variable is unique with

that variable name.

(iii) When Program execution starts the variable name

is automatically translated into the corresponding

address.

Now, keeping in mind the above properties if we define the

mapping

T:S -> X such that T(v)=a for v S and a X. is an

injective mapping. Where

S = { v Data : v contains the value of the variable}

X = { a Data : a contains the address of the variable}

Now we have to check whether the mapping T is injective

or surjective:

The mapping T is injective because different value of

variable have unique address of the variable.

The mapping T is not surjective because for each address

there may not exit some value in domain set such that

T(i)=j.

NOTE: Since the function T may or may not be surjective .

Therefore inverse of T does not exit. Therefore from

address of the variable we can not get the value of the

variable.

NOTE :T(x+y) = T(x)+T(y) and T(cx)=cT(x) does not hold

always because T is not surjective and therefore T is not

bijective. So

a. addition of two pointers and multiplication by a

constant should be avoided.

b. We cannot use Address operator for accessing

address of literals

c. Output of (a+b) in a programming process is

nothing but literals so we cannot use address

Operator &(a+b).

The following result does not hold due to above mapping:

One can perform different arithmetic operation on pointer

such as increment, decrement but still we have some more

arithmetic operation that cannot be performed on C.

a. Addition of two addresses is not valid.

b. Multiplying two addresses is not valid.

c. Division of two addresses is not valid.

d. Modulo operation on pointers is not valid.

e. Bitwise AND ,OR ,XOR operation on pointer(s) is

not valid .

f. NOT operation or negation operation on pointer is

not possible.

Now the above points will be discussed programmatically :

1.Additon of two pointers:

#include<stdio.h>

int main()

{

int var=10;

int *ptr=&i;

int *ptr2=(int*)2000;

printf(„%d”,ptr1+ptr2);

return 0;

}

Output :

Compile error

2. Multiplication of pointer and a number:

#include<stdio.h>

int main()

{

int var=10;

int *ptr=&i;

int *ptr2=(int*)2000;

printf(„%d”,ptr1*var);

return 0;

}

Manoj Kumar Srivastava et al, Journal of Global Research in Computer Science, 5 (2), February 2014, 24-29

© JGRCS 2010, All Rights Reserved 26

Output :

Compile error

3. Multiplication of two pointer:

#include<stdio.h>

int main()

{

int var=10;

int *ptr=&i;

int *ptr2=(int*)2000;

printf(„%d”,ptr1*ptr2);

return 0;

}

Output :

Compile error

4. Modulo operation of two pointer:

#include<stdio.h>

int main()

{

int var=10;

int *ptr=(int*)1000;

int *ptr2=(int*)2000;

printf(„%d”,ptr2%ptr2);

return 0;

}

Output :

Compile error

5. Division of pointer:

#include<stdio.h>

int main()

{

int *ptr1,*ptr2;

int *ptr=(int*)1000;

ptr2=ptr1/4;

return0;

}

Output :

 Illegal use of pointer

6. Can not perform bitwise OR

#include<stdio.h>

int main()

{

int i=5,j=10;

int *p=&i;

int *q=&j;

printf(„%d”,ptr1|ptr2);

return0;

}

Output :

Compile error

7. Negation operator of two pointer:

#include<stdio.h>

int main()

{

int i=10;

int *ptr=&i;

printf(„%d”,~ptr);

return0;

}

Output :

Compile error

Summary at a glance:

Address + Address= Illegal

Address * Address= Illegal

Address / Address= Illegal

Address % Address= Illegal

Address & Address= Illegal

Address | Address= Illegal

Address ^ Address= Illegal

~Address =Illegal

Subtraction operation in Pointer:

How subtraction properties hold on pointer? The mapping

defined above is an injective mapping.so nearly Isometry

rule hold between two sets with little change in the

formula due to size of variable.

Computation of ptr2-ptr1 is done by the following formula;

Final result=(ptr2-ptr1)/size of data types

Pointer to Pointer:

A pointer to a variable ,is a variable ,that stores the address

of another variable of specific type .A pointer to pointer is a

variable ,that stores address of a pointer variable of specific

type. The mapping between T: X  Y is given by

 T(&a)=&(&a).

Where X = {a Data : a have the value of the variable

and &a is the address of the corresponding variable}

Y = {&a Data : & a have the address of the variable}

Example

Example: Write a program to show pointer to another

pointer :

#include<stdio.h>

void main()

{

int *a, **b, ***C ,****d;

int n=10

clrscr();

a=&n;

b=&a;

c=&b;

d=&c;

printf(“Address of n=%x Value of n=%d\n”,a,*a);

printf(“Address of a=%x Address of n=%x Value of

n=%d\n”,b,*b,**b);

printf(“Address of b=%x Address of a=%x Address of

n=%x Value of n=%d\n”,c,*c,**c,***c);

printf(“ Address of c=%xAddress of b=%x Address of

a=%x Address of n=%x Valueof

n=%d\n”,d,*d,**d,***d,****d);

getch();

}

Pointer to Array: The mapping defined between two set

S={n[i] :i N } and X={a[i] :i N } is called

the pointer to array

 T(n[i])=&n[i]

 =a[i]

which is equivalent to the mapping T:S X

T(*(pt+i))=pt+i for i=0,1,2,……..,m

if we take the set S={*(pt+i) :pt is pointer variable and

i=0,1,2,……,m} and

X= {(pt+i) : pt is pointer variable and i=0,1,2,……,m}

Manoj Kumar Srivastava et al, Journal of Global Research in Computer Science, 5 (2), February 2014, 24-29

© JGRCS 2010, All Rights Reserved 27

Example:Suppose we declare an array x as follows:

Int x[5]={1,2,3,4,5};

Suppose the base address of x is 1000 and assuming that

each integer requires two bytes,the five elements will be

stored as follows:

Table:1

Elements x[0] x[1] x[2] x[3] x[4]

Value 1 2 3 4 5

Address 1000 1002 1004 1006 1008

 Base address

The name x is defined as a constant pointer pointing to the

first element,x[0] and therefore the value of x is 1000,the

location where x[0] is stored. That is ,

 x=&x[0]=1000

If we declare pt as an integer pointer, then we can make the

pointer pt to point to the array x by the following

assignment:

 pt=x;

This is equivalent to pt=&x[0];

Now, We can access every value of x using pt++ to move

from one element to another .The relationship between pt

and x is shown as:

Table: 2

Pt &x[0] 1000

pt+1 &x[1] 1002

pt+2 &x[2] 1004

pt+3 &x[3] 1006

pt+4 &x[4] 1008

Array of Pointers: Array of pointers is a collection of

specific location of the memory from where one can get

further address locations.

Example : int *a[4], *b[5];

 Here *a[0], *a[1],*a[2],*a[3], *b[0],*b[1], *b[2], *b[3],

*b[4] are the different locations in the memory from where

we can reserve further memory addresses. Each element of

the array is considered as pointer.

Structure : The general syntax of structure tag is

struct tag{

 member1;

 member2;

……………….

……………….

 member n;

}var1,var2,var3,……..var n;

struct tag={member1,member2,member3 ,member4…

……….,member n}

={(member1,member2,member3……………..,member)

Data1xData2x……………xData n :each member is

accessed by variable vi of given main() function is accessed

in the form vi.memberj or vi->member or &vi.memberj for

j=1,2,…….n and i=1,2,……….}

Structure in structure:If S1 is subset of S2 then for each

x S1 => x S2.Using this property we can prepare the

conception of structrure in structure.

Struct tag1={(member1,member2,………….member n}

Struct tag2={{struct tag},membern+1,member

n+2,……………,member p}

 ={member1,member2,member3,………………..,m

ember n,member n+1,member n+2,………..member p}

Array of Structures:

All the data items in an array have the same name. Members

of an array one-to-one to correspondence with set of positive

integers including zero. Since array consists of finite number

of terms. Hence they are connectable. The diagram for array

in the mathematical way:

Variable
1 V1

 2 V2

 …….. …….

n-1 V(n-1)

N Vn

Figure-3: Variable as Function

Variable [1] = Value 1

Variable [2] = Value 2

……………………….

Variable [n] = Value n

Variable
1 Sruct1

 2 Struct2

 …….. …….

n-1 struct(n-1)

N Struct n

Figure-3: Variable as Function

struct[1]={member1,member2,member3,member4,……….,

member n}

struct[2]={{member1,member2,member3,member4,……….

,member n}

struct[3]={member1,member2,member3,member4,……….,

member n}

struct[4]={member1,member2,member3,member4,……….,

member n}

………………………………………………………………

…………….

………………………………………………………………

………………

struct[n]={member1,member2,member3,member4,……….,

member n}

Pointers to structure: The general syntax for pointer to

structure in an example can be as follws:

struct emp {

 …………….

 ……………..

 }e1, *ptr_emp;

 ptr_emp=&e1;

Now we consider a mapping T:SA where S is a structure

set and A is set containing address of the variable. Now if

we using the definition of pointer in mathematical way as

defined above is:

 T(member)= &member

Manoj Kumar Srivastava et al, Journal of Global Research in Computer Science, 5 (2), February 2014, 24-29

© JGRCS 2010, All Rights Reserved 28

 =a where member S and a A.

But in the pointer to structure we access the member as in

the following way :

 T(member)=&(*pointer.member)

 Or

 T(member)=&(pointer member)

This result can be shown in this example as follows:

Struct name {

 member 1;

 member2;

………….

…………..

…………….

};

----------inside function------------

 struct name *ptr;

Here the pointer variable of type struct name is created

structure member through pointer can be used in two ways.

a. Referencing pointer to another address to access memory.

b. Using dynamic memory allocation.

Example: Consider an example to access structure‟s member

through pointer :

#include<stdio.h>

struct name{

 int a;

 float b;

}

int main()

{

struct name*ptr, p;

ptr=&p; /*referencing pointer to memory address

of p */

printf(“Enter integer :”);

scanf(„%d “,&(*ptr).a);

printf (“Enter number:”);

scanf(“%f”,&(*ptr).b);

printf(“Displaying :”);

printf(“%d%f”,(*ptr).a,(*ptr).b);

return 0;

}

In this example ,the pointer variable of the type struct name

is referenced to the address of p .Then only the structure

member through pointer can be accessed.

Structure pointer member can be accessed using -> operator.

(*ptr).a is same as ptr->a

(*ptr).b is same as ptr->b

Accessing structure member through pointer using dynamic

memory allocation:- To access structure member using

pointer , memory can be allocated dynamically using

malloc() function defined under “stdlib.h” header file.

Syntax of use of malloc() is:

 ptr=(cast_type*)malloc(byte_size)

Example to use Structure‟s member through pointer using

malloc() function:

#include<stdio.h>

#include<stdlib.h>

struct name{

int a;

float b;

char c[30];

}

int main()

{

struct name *ptr;

int i,n;

 printf(„Enter n:”);

scanf(“%d”,&n);

ptr=(struct name*)malloc(n*size of (struct name));

/*above statement allocates the memory for on

structure with pointer ptr pointing to base

address*/

for(i=0;i<n; i++)

printf(“Enter string,integer and floating number

respectively:\n”);

scanf(“%s%d%f”,&(ptr+i)->c,&(ptr+i)-

>b,&(ptr+i)->b);

}

printf(“Displaying information;\n”);

for(i=0;i<n;i++)

printf(“%s\t%d\t%.2f\n”,(ptr+i)->c,(ptr+i)-

>a,(ptr+i)->b);

return 0;

}

2.8 : Pointer within structure:

(i) Structure may contain the pointer variable as member.

(ii)Pointer are used to store address of memory location

(iii)They can be de-referenced by „*‟ operator.

The above case is defined for pointer within structure as

follows

Struct tag={member1,member2,member3 ,member4…

……….,member n}

={(member1,member2,member3……………..,member)

Data1 x Data2 x……………x Data n: pointer member is

accessed by value of variable vi of given main() function is

accessed in the form vi.member j or vi->member or

*vi.memberj or *vi->member j for j=1,2,…….n and

i=1,2,……….}

Example:

#include<stdio.h>

struct student

{

int *ptr; /* store address of integer variable*/

char *name;/*store address of character string*/

}s1;

int main()

{

int roll=20;

s1.ptr=&roll;

s1.name=”aayush”;

printf(“\n Roll number of student:%d”,*s1.ptr);

printf(“\n Name of student:%s”,s1.name);

}

Union: The general syntax of union tag is

 union tag{

 member1;

 member2;

……………….

……………….

 member n;

}var1,var2,var3,……..var m;

Manoj Kumar Srivastava et al, Journal of Global Research in Computer Science, 5 (2), February 2014, 24-29

© JGRCS 2010, All Rights Reserved 29

Union tag={member1,member2,member3 ,member4…

……….,member n}

={(member1,member2,member3……………..,member)

Data1xData2x……………xData n :each member is

accessed by variable vi of given main() function is accessed

in the form vi.memberj or vi->member or &vi.member j for

j=1,2,…….n and i=1,2,3……….m}

Note : A union is used for applications involving multiple

members ,where values of only one member need to be used

at one time.

Relational Operators :==,<,>,<=,>=,!= are follows due to

properties of real numbers which are following:(i)Algebraic

properties

(ii)ordered properties

(iii)Density properties

(iv)Completeness properties

(v)Archimedian properties

Logical Operator:- The properties of logical operator &&,

||, ! holds due to Boolean algebra.

2.12. gotoxy() function

 gotoxy()={(row,col) NxN :there is some properties of

the variable at that position}

 Here N is set of natural number.

:

CONCLUSION AND FUTURE SCOPE

In the present paper the authors have studied how some

important statements of C-language can be verified or

compared with various mathematical models or functions. In

the present paper the authors have shown how pointers,

structures can be compared with different simple

mathematical description. The language used in this paper is

C-language. The similar concept may be applied to object

oriented language or any scripting language. In the present

paper the authors have focused on statements of C-

language, data types, storage allocation, pointers, structures.

The similar mathematical analysis may be done for any

other high level language specially object oriented language

like Java, C# etc.

REFERENCES

[1]. Mathematical modeling of various statements of C-type

Language, Manoj Kumar Srivastav , Asoke Nath,

International Journal of Advanced Computer

Research(IJACR), Vol-3,Number-1, Issue-13, Page:79-87

Dec(2013).

[2]. Real Analysis , S.K.Mapa, publication-Asoke Prakasan,

year1998

[3]. Higher Algebra, S.K.Mapa,publication-Sarat Book

Distribution,year 2000

[4]. Discerete Mathematics with Proof , Eric Gossett, Wiley ,

India

[5]. Discrete Mathematics, N.Chandrasekaran, M.Umaparvathi,

PHI, 2010

[6]. Discrete Mathematics and its Applications, K.H.Rosen, Tata

Mcgraw-Hill Publishing Company limited, 2003

[7]. Programming in ANSI C, E.Balagurusamy, Tata Mcgraw

Hill Book Company, 2004

[8]. Calculus and analytic geometry-Thomas, Finney pearson

eduation asia-2002

[9]. Mathematcs- Dr.R.D.Sharma-Dhanpat Rai publication

(p)ltd-2010

[10]. notes of constructive mathematics and computer

programming-P.Martin Lof.

[11]. complex variable and application-churchill Brown.McGraw-

Hill International publication1996

[12]. www.c4learn.com

