Relationship between Educational Society and Nature - Education Accumulation Study

Liu Zhaoyang*

Yang Yang International Plaza, Block A, ShaanXi province, Xi'an city, China

Review Article

Received: 02/07/2017 Accepted: 23/07/2017 Published: 31/07/2017

*For Correspondence

Liu Zhaoyang, Yang Yang International Plaza, Block A, ShaanXi province, Xi'an city, China, Tel: +8613809197035.

E-mail: morningssunl@163.com

Keywords: Accumulation law, Nature citation index, Educational society, Threshold

ABSTRACT

The aim of the paper is to study the harmonious relationship between educational society and nature. The industry is altering the nature, whereas forest is safeguarding the society at all times and it is nature citation index from the earth and natural heaven for all animals.

In biology, the life has two aspects: man is super power and woman is wonder civilization.

However, currently, man power is out of control and woman civilization is exploding as population explosion. The heart is motion of blood and everything could be calculated from everywhere for different beings.

INTRODUCTION

Society-Capital

Education is one of the most important aspects of human society. Three accumulation models in education are described as: education accumulation, education technology accumulation and user selection. In education accumulation, the profit in total output is used to replicate the profit over a constant period of time. Enterprises manage education accumulation for maximizing profit. Under limited time, space, and resource, core capital flows to create the rule and establish industrial chain. From the aspect of human beings, the flow is from human resource to human capital high price defeats low price [1].

The two types of technology accumulation are quantity and quality accumulations. One of the examples of technology accumulation is Moore's law. Technology accumulation ratio is bigger than education accumulation ratio. Advancement in technology drives the expansion of the capital, which in turn leads to accumulation. Capital flows as per the user requirement. The manufacturer sells products to consumers, wherein the user has the freedom to select the product. This eventually results in the establishment of different sets of markets. In a community, user requirements and technology are the two most critical aspects of technology accumulation. Accumulation threshold along with network accumulation divides market into upper segment, middle segment, and popular segment. Popular segment, with common price of the commodities, includes most active users and maximum market value. Social elements, though important for human society, that restrict the development of society include social security, welfare, philanthropy, and insurance. Gresham's law not only refers to driving good money out of circulation, but also establishing new knowledge that difficult is central to the community understating of technology threshold. Murphy's Law states the certainty that if something is meant to go wrong, it will. Pareto principle says that 20% of the people own 80% of the wealth and 20% of the scholars own 80% of the knowledge. A coin has two sides, as the proverb runs; one false step will result in a significant difference. The aircraft and ship are merely the two shades of a bird and a fish. On similar lines, the Second World War was a shameful act, the NAZIs are considered as black widow for millions of Jews. Bad science is not God's humor, and animal experiment is like Pokémon in hell. Human body has the ability for self-cure. Some popular science always plays to the gallery of dark social psychology. Matthew effect talks about the correlation between society

and technology. User selection in society is different from nature selection. While food chain is the center of society, intelligence serves as the center of academy. Just like food is critical for the body, knowledge is quintessential for a scholar. Race has various Totems; in light, man has five kinds of colors that are white, black, brown, yellow and red. Colonialism has led to racial segregation and racial discrimination. It'd be condemned to consider consanguinity as love and colonialism as hatred, especially when life is equal for everyone. Green peace and forest are non-government organization [2]. Evolution and war are two bad tools for the government, war is losing to lose situation.

Network

With the advent of technology, there has been a significant development in networking in societies. Computer technology, specifically, serves three central purposes: encapsulation, inheritance, and polymorphism. This significantly affects the scientific community as well. Scientific proposition, scientific hypothesis, scientific law, and scientific community are four important aspects of science research. Scientific proposition, a feature of scientific communication in the society, occurs between a teacher and a student, wherein a teacher, with his or her authority, helps the latter solves complex problems by specifically pointing out the strategies. In order to push the science, scholars need to constantly 'communicate'. Recent developments in computer technology have enabled efficient communication of science among societies, which eventually leads to expansion in knowledge across multiple domains ^[3]. However, technology is a necessary, albeit not sufficient condition for the emergence of a new form of social organization based on networking that is on the diffusion of networking in all realms of activity on the basis of digital communication networks. This process can be likened to the role of electricity and the electrical engine in diffusing the organizational forms of the industrial society (e.g. the large manufacturing factory, and its correlate the labor movement) on the basis of new technologies of energy generation and distribution. It can be argued that nowadays wealth, power, and knowledge generation are largely dependent on the ability to organize society to reap the benefits of the new technological system, rooted in microelectronics, computing, and digital communication, with its growing connection to the biological revolution and its derivative, genetic engineering. I have conceptualized as the network society the social structure resulting from the interaction between the new technological paradigm and social organization at large. Often, the emerging society has been characterized as information society or knowledge society. I take exception with this terminology not because knowledge and information are not central in our society, but because they have always been so, in all historically known societies. What are new are the microelectronics-based, networking technologies that provide new capabilities to an old form of social organization: networks. Networks throughout history had a major advantage and a major problem via-a-via other forms of social organization^[4]. On the one hand, they are the most adaptable and flexible organizational forms, so following very efficiently the evolutionary path of human social arrangements. On the other hand, in the past they could not master and coordinate the resources needed to accomplish a given task or fulfill a project beyond a certain size and complexity of the organization required to perform the task. Thus, in the historical record, networks were the domain of the private life, while the world of production, power, and war was occupied by large, vertical organizations, such as states, churches, armies, and corporations that could marshal vast pools of resources around the purpose defined by a central authority. Digital networking technologies enable networks to overcome their historical limits. They can, at the same time, be flexible and adaptive thanks to their capacity to decentralize performance along a network of autonomous components, while still being able to coordinate all this decentralized activity on a shared purpose of decision making. Digital communication networks are the backbone of the network society, as power networks (meaning energy networks) were the infrastructure on which the industrial society was built, as it was demonstrated by historian Thomas Hughes. To be sure, the network society manifests itself in many different forms, according to the culture, institutions, and historical trajectory of each society, as the industrial society encompassed realities as different as the United States, and the Soviet Union, England or Japan, while still sharing some fundamental features that were recognized as defining industrialism as a distinct form of human organization not determined by the industrial technologies, but unthinkable without these technologies ^[5]. The network society, in the simplest terms, is a social structure based on networks operated by information and communication technologies based in microelectronics and digital computer networks that generate, process, and distribute information on the basis of the knowledge accumulated in the nodes of the networks. A network is a formal structure. It is a system of interconnected nodes. Nodes are, formally speaking, the points where the curve intersects itself. Networks are open structures that evolve by adding or removing nodes according to the changing requirements of the programs that assign performance goals to the networks. Naturally, these programs are decided socially from outside the network. But once they are in scripted in the logic of the network, the network will follow efficiently these instructions, adding, deleting, and reconfiguring, until a new program replaces or modifies the codes that command its operational system.

What the network society actually is cannot be decided outside the empirical observation of social organization and practices that embody this network logic. Thus, I will summarize the essence of what scholarly research (that is the production of knowledge recognized as such by the scientific community) has found in various social contexts. Let us start with the education. The network education (known at one point as "the new education") is a new, efficient form of organization of production, distribution, and management that is at the source of the substantial increase in the rate of productivity growth in the United States, and in other economies that adopted these new forms of economic organization ^[6].

The rate of productivity growth in the U.S. during 1996-2005 more than doubled the rate of productivity growth in 1975-95. Similar observations can be applied to those European economies, such as Finland or Ireland that quickly adopted a similar form of techno-economic organization, albeit in a very different institutional context (e.g., the maintenance of the welfare state). Studies, including the research presented by Dale Jorgenson in this volume, show that the rate of productivity growth in other European economies and in Japan may have increased as well once statistical categories are adapted to the conditions of production in an education that has gone beyond the industrial era under which these categories were created. Throughout the world, developing economies that articulate themselves to the dynamic nucleus of the global network education display even higher rates of productivity growth (e.g. in the manufacturing sectors of China or India) [7]. Moreover, the increase of productivity is the most direct empirical indicator of the transformation of a productive structure. Researchers have found that productivity growth in this period has been largely associated to three processes, all of which are necessary conditions for productivity growth to take place: generation and diffusion of new microelectronics/ digital technologies of information and communication, on the basis of scientific research and technological innovation; transformation of labor, with the growth of highly educated, autonomous labor that is able to innovate and adapt to a constantly changing global and local education; diffusion of a new form of organization around networking. Only when the three conditions are fulfilled in a firm, a sector, a region, or a country, productivity rises substantially, and only this surge in productivity can sustain competitiveness in the long run [8].

SCIENCE CITATION INDEX (SCI)

Science citation index (SCI), with wide social influence, is correlated to literature and sociology of research. For both the aspects, SCI could be compared as follows:

- · Between concepts of communication and citation; and
- Objects' comparison between patent and computer software.

For efficient communication of scientific research, SCI and patent are usually preferred. SCI refers to citation of the research, especially in terms of enumeration or mention, facts, and quoting of an authoritative source of information. The knowledge of science communication tools forms the technical accumulation layer that affects communication and scientific research.

SCI can not only communicate research effectively, but can accelerate scientific research. Science communication includes path, scope, and depth; wherein scope of communication is central to research resource. Citation, which emphasizes on the intellectual property, is different from communication. The three flow directions for SCI value accumulation model are as follows:

Language Flow

Language is a tool for communication and diversity in language influences scientific research. The factor that impacts research and how it is communicated is based on the use of tools for science communication, and not on citation. Humans, technology, and education accumulation together disorganize the traditional scientific community.

Second is Value Accumulation Flow

Citation refers to the value accumulation of scientific research. It is critical to validate the scientific knowledge lies before communication. The evaluation of scientific research is based on the presupposition of science concept, "value-neutrality", by Max Weber. While some of the scientific knowledge will be valuable in future, others will prove to be at fault. For the latter, new discoveries would replace the old knowledge in order to sustain the development of scientific knowledge. Science knowledge is research-oriented and is associated with research integrity.

Papers Accumulation Flow

SCI presents the value increment law in scientific research. For example, Bradford's law explains literature flow; Lotka's law describes value increment of personal scientific research, Zipf's law highlights word accumulation. The paper accumulation flow has created price index over a period of time. Further, network price index should be associated with shorter periods in order for the four elements in SCI to be aligned with the scientific communication laws [8].

NATURE

Energy

Energy in Nature and Society is central to the paradigm aspect of all the major energy sources, storages, flows, and conversions that have shaped the evolution of the biosphere and civilization. Vaclav Smil uses fundamental unifying metrics (most notably for power density and energy intensity) to provide an integrated framework for analyzing all segments of energetics (the study of energy flows and their transformations). The concept explores not only planetary energetics (such as solar radiation and geomorphic processes) and bioenergetics (For example-photosynthesis) but also human energetics (such as metabolism and thermoregulation), tracing them from hunter-gatherer and agricultural societies through modern-day industrial civilization. Some of the aspects included in this concept are heterotrophic conversions, traditional agriculture, preindustrial complexification, fossil fuels, fossil-fueled civilization, the energetics of food, and the implications of energetics for the environment. Energy in society and nature is typically engaging. The concept examines the general patterns, trends, and socioeconomic considerations of energy use today, looking at correlations between energy and value, energy and the education, energy and quality of life, and energy futures. Here, we can emphasize the complexities and peculiarities of the real world, and the counterintuitive outcomes of many of its processes, over abstract models. Energy in Nature and Society provides a unique, comprehensive, single-volume analysis and reference source on all important energy matters, from natural to industrial energy flows, from fuels to food, from the Earth's formation to possible energy futures, and can serve as a text for courses in energy studies, global ecology, earth systems science, biology, and chemistry [4].

NATURE CITATION INDEX

Human And Nature Dynamics (HANDY) was originally built based on the predator-prey model. We can think of the human population as the "predator", while nature (the natural resources of the surrounding environment) can be taken as the "prey", depleted by humans. In animal models, carrying capacity is an upper ceiling on long-term population. When the population surpasses the carrying capacity, mechanisms such as starvation or migration bring the population back down. However, in the context of human societies, the population does not necessarily begin to decline upon passing the threshold of carrying capacity, because, unlike animals, humans can accumulate large surpluses (i.e., wealth) and then draw down those resources when production can no longer meet the needs of consumption. This introduces a different kind of delay that allows for much more complex dynamics, fundamentally altering the behavior and output of the model. Thus, our model adds the element of accumulated surplus not required in animal models, but which we feel is necessary for human models. We call this accumulated surplus "wealth".

Empirically, however, this accumulated surplus is not evenly distributed throughout society, but rather has been controlled by elite. The mass of the population, while producing the wealth, is only allocated a small portion of it by elites, usually at or just above subsistence levels. Based on this, and on the historical cases discussed in the introduction, we separated the population into "Elites" and "Commoners", and introduced a variable for accumulated wealth [9].

In reality, natural resources exist in three forms: nonrenewable stocks (fossil fuels, mineral deposits, etc.), regenerating stocks (forests, soils, animal herds, wild fish stocks, game animals, aquifers, etc.), and renewable flows (wind, solar radiation, precipitation, rivers, etc.). Future generations of the model will disaggregate these forms. We have adopted a single formulation intended to represent an amalgamation of the three forms, allowing for a clear understanding of the role that natural resources play in collapse or sustainability of human societies.

CONCLUSION

Harmony exists between society and nature. For most of our history, the planet seemed static compared with the rate of cultural changes. The great increase in human population and impacts during recent years has reversed this relationship. The rapid changes imposed by humans on the planet seem to exceed the rate at which societies can change core attitudes, leading humans increasingly to perceive their planet as small and vulnerable.

In this shrinking world, a shift in conservation thinking from simply preserving "what is, or what was there" to include understanding and promoting "what more could be there" may also help reassess how we view interactions with nature. Putting the reconciliation of biodiversity conservation and human-made nature within a worldview based on respect for nature and for its biophysical limits would be a way to overcome the risk of devaluing the more natural areas.

Conservation science would then increasingly become a means to reflect better on how we interact with the world and others and on how to adjust our needs to the resources at hand, rather than a means to provide society with ways to "mitigate" undesired effects of "useful/necessary progress". Such a new mission could be articulated around an ethical commitment toward respect for nature, a commitment for which a first necessary step is to acknowledge and respect the biophysical limits of the living community.

REFERENCES

- 1. Becker G. Rationale Choice Theory. 2002.
- 2. Jones B and Varlotta L. Student affairs, budgeting and financial management in the midst of fiscal crisis. 2010.
- 3. Werber B. Empire of the Ants. 1999.
- 4. Kundera M. The unbearable lightness of being the exile publishing house. Toronto, Canada. 1985.
- 5. Gordon EM. Cramming more components onto integrated circuit. Electronics. 1965;38:8-19.
- 6. John DS. Technology, investment, and economic fluctuations. University of Connecticut. 2003.
- 7. Robert KM. The Matthew effect in science, cumulative advantage and the symbolism of intellectual property. The University of Chicago Press Journal. 1988;79:606-623.
- 8. Theodore WS. Investment in human capital. American Economic Review. 1961;2:1-17.
- 9. Peter MS. The fifth discipline: The art and practice of the learning organization. 1990.

Economy	Technology	Capital	User
Models	accumulation	accumulation	selection
Period	Short and long	Constant	Three phases
Accumulation ratio	High	Low	Low
Flow direction	Core technology	Core capital	Capital to the
			requirement of user
Feature	Technology	Capital pushing	Accumulation Market
	accumulation law	mode	threshold

List 1. Accumulation models in economics

Accumulation	Platform					
	Society					
Flow	Element Law					
	Core	20/80 principle				
	Margin Matthew effect					
	Operation Murphy's law					
	Currency Gresham's law					
	List 2 Social laws	•				

List 2. Social laws

Social elements	Gresham's law						
Knowledge	Share	Colonialism					
Race	Equality	Racialism	Racial segregation Racial discrimination				
Power	Peace	Hegemony					
Environment	Safeguard	Pollution					
Capital	Law	Criminal					
		Cheater					
Food chain	Animal	War					
	Plant		Cancer				

List 3. Comparison of aspects in Gresham's law

Theory	Creator		
Evolution	Animal cross		
Extra-terrestrial being	Mystery		
Religion	God		
Accumulation	Plant		

List 4. Academy town

User selection			Nature				
Accumulation		Evolution					
Encapsulation	Inheritance	Polymorphism	Natural selection		Sex selection		
			Biology Physics		Psychology	Sociology	
Nature citation index			Science c	itation index			
Green peace							

List 5. Theory framework

Accumulation	Platform					
flow	Computer network					
	Element Law					
	CPU	Moore's law				
	Bulk and price Bell's law					
	Network bandwidth Gilder's law					
	Network value Metcalfe's					

List 6. Laws in network world

	Platform				
	Science citation index				
Accumulation	Element	Law			
Accumulation Flow	Literature	Bradford's law			
	Personal paper	Lotka's law			
	Word	Zipf's law			
	Interesting	Price index			

List 7. Laws in science citation index

1.	F	ree will	Knowledge in free world				
		See through the vanity of the world					
2.	Action	Let r	Let nature takes its course				
	Action	Certainty					
		Greatly discerning and apprehending					
3.		Knowledge					
4.	Consciousness						
5.	Hyp	onogenesis	Milk				

List 8. Free will

Knowledge	Strong knowledge	
God	God Cross	
Leonardo da Vinci	Mona Lisa	
Thinker	Milan Kundera	
Evolution	Darwin On Trial	
List 0 Completion between	tuono lunovulodoo ond lunovulodoo	

List 9. Correlation between strong knowledge and knowledge.

Subject	Object	Accumulation study
Dhysics	Space	Energy accumulation law
Physics	Substance	Molecule accumulation law
Biology	Animal	Cell accumulation law
	Race	
Sociology	Country	Knowledge accumulation law
	Culture	

List 10. Knowledge index.

Strong knowledge]	Intelli	gence and	l inte	llection			
world	Male						Female			
			Death	1				Life		
			Look					Fee	el	
			Sky					The six	sense	
	Ν	Aeat	intelliger	nt eye	law		Lo	ove	Woman body	
	Darw	vin's eye			Johnson's	s eye	M	ary	Legend	
		Earth								
	Eat									
		Plant					Animal			
	God	All Re	eligions		nal rescue	Sla	ughter	Cow	unlimited	
		Buddhism			exp		periment			
		Jud	aism							
		Chris	tianity	The red cross		1	War	Pig		
		Isla	mism		1		eace	Chicker	1	
								Sheep		

List 11. God's intelligence.

Knowledge psychology					
Plant Animal					
Chicken soup for the soul					
- Chicken soup for the soul					
Discrimination Segregation					
	Anir Chicken soup				

List 12. Comparison of plant and animal psychology.

	Science						
God	Cor	notation	Exten	Extension		Mystery	
M	Matthew effect Evolution						
Anonymous law			The big bang			g	
				Famous space			
Dust to dust	Big	Small	The	S	un	Three bodies	
ashes to ashes	Photon	Substance	drunken God				
	Hot	Cold	004				
Photon is God particle			Moon	Mirror			
God CROSS				Ea	rth		

List 13. Religion and science.

Nature objects	Energy				
Plant	Coal				
Biology	Petroleum Natural gas				
Food	Alcohol				
Т :-4 1.	A NT-4				

List 14. Nature and energy.

Nature	Gene		Energy		Nati	ure
models	accumulation		accumulation		selection	
Period	Short an	d long	Short and long		Cons	tant
Accumulation ratio	High		Hi	gh	Lo	W
Flow direction	Core gene		Biology	Plant	Adaptability	Allergy
	Redundancy Neutral					
Power	Neutral se	election	Nature	energy	Press	sure
	Genetic drift				Varia	tion
	Mutat	tion				

List 15. Comparison of nature models.

	Platform				
		Nature			
accumulation	Element Law				
	Cell division Cell-accumulation law				
flow	Gene frequency Biology structure				
	Plant Nature citation index				
	Biology energy Jungle law				

List 16. Accumulation laws in nature.

Natural civilization				
Land	Man			
Land	Ant			
Forest	Monkey			
Sky	Bird			
Sea	Fish			
I :- 4 17 Nisternel a setting the				

List 17. Natural civilization.

Nature-accumulation	Biology accumulation layer	Ecological community	
layer	Biology information accumulation layer	Gene	
	Biology energy accumulation layer	Plant	
	Temperature accumulation layer	"Greenhouse effect"	
	Water accumulation layer	"Snowball earth"	
	Materials accumulation layer	"Continental drift"	

List 18. Nature accumulation layer.

Plant				Ani	mal	
Nature citation index			х	Private patent		
Science driven				Technology driven		
Volatilization				Encapsulation		
H	Photosy	nthesis		Metabolism		
Sunlight	Gas	Water	Soil	Nutrition		
Seed				Cell	Gene	
Chloroplast			Cell	Gene		

List 19. Plant and animal.

	Natural object	Polymorphism		
	Sunlight	Energy		
Nature citation index	Atmosphere	Gas	Volatilization	
Inature citation muex	Water	Liquid		
	Soil	Solid	Encapsulation	
	Aether			

List 20. Comparison between polymorphism and natural objects.

Magic moti	on machine	Parallel universe		
Nature	Gravity	Science	Relativity	
Knowledge	Energy	Politics	Religion	
Biology		Physics	Chemistry	
Ani	mal	Male	Female	

List 21. Comparison between motion machine and parallel universe.

Energy accumulation	Inheri		Polymorphism Energy flow of natural environment				
	Energy flow fro	Energy					
	Super biology		Sea	Land	Tree	Sky	
	Mainfram	Mainframe biology				-	
	Medium		Varia	ation			
	Small b	Natural environment					
	Microb						
	Male	Female	Cell accumulation law			N	
		Cell k	tingdom	ngdom			
	Ce	211	Bac	terial	Gene		
	Germ Cell Stem cell						
	Mitocho						
	"Primordial soup"						
		The thun	der number				

List 22. Energy accumulation

Geograph	y	Consangui	inity	DNA flow	Element	Letter	Coding
	-	_			Adenine	Α	Quaternary
					Guanine	G	
Water					Cytosine	C	
					Thymine	Т	
Incubator	C	ombinatory		RNA	Innovation Center		Center
	En	ergy factory	Mite	ochondrion			
		Venture	Ca	incer cell			
	A	Accelerator		Gene			
	Egg				Cel	1	
	Light energy		Light color				
			5	Sun Light			

List 23. Elements in DNA