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INTRODUCTION
The properties of prime numbers have been studied for many centuries. Euclid gave the first proof of infinity of primes. Euler 

gave a proof which connected primes to the zeta function. Then there was the Gauss and Legendre’s formulation of the prime 
number theorem and its proof by Hadamard and de la Vallee Poussin. Riemann further came with some hypothesis about the 
roots of the Riemann-zeta function [1,2]. 

Many others have contributed towards prime number theory. 

Legendre’s conjecture, proposed by Adrien-Marie Legendre states that there is a prime number between n2 and (n+1)2 
for every positive integer n. The conjecture is one of Landau’s problems (1912) on prime numbers. The conjecture has not been 
proved to the time of writing of this paper [3,4]. 

The Goldbach conjecture was proved in a paper entitled “a simple proof of Goldbach conjecture.

In this research a method will be presented of proving Legendre’s conjecture.

METHODOLOGY
From Legendre conjecture:

2 2( 1) 2 1n n n+ − = +                                                                                                                                                           1

2( 1)n +  and 
2n  are composite numbers with exceptional case where n=1.     

 

Consider a prime number:
2p n r= +                                                                                                                                                                          2

Such that:
2 2 2( 1)n n r n< + < +                                                                                                                                                          3

From 3:
21 1p n r+ = + +

21 1p n r+ = + +                                                                                                                                                                      4
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When one is added to a prime number the result is an even number (e). 
2 1e n r= + +                                                                                                                                                                           5

According to Goldbach conjecture (proved) every even number greater than two is a sum of two prime numbers. 

Therefore:

4e ≥                                                                                                                                                                                         6

1n =                                                                                                                                                                           7

We consider the limit case 1n =  and 4e ≥ , then by equation 4, ( 4e ≥ ). 

For 4e ≥
For odd primes 2p  and 2p  then interpreting equation 4 using Goldbach conjecture:

2
1 2 1 21 1p p n r p p p+ = + + → = + −                                                                                                                                     8

From equation 2:
22 ( )p n r= +                                                                                                                                                             9

2 2 2
2

n p n n
r n

< ≤ +
≤

Goldbach conjecture states that every prime number greater than two is the sum of two prime numbers. Equation 9 borders 
on Goldbach conjecture. For the purpose of the present analysis we will rewrite the equation to suit our proof method [5-8].

2
1 22 ( )p n r p p= + = +                                                                                                                                                          10

2 22 2 2 4n p n n< ≤ +                                                                                                                                            11

Existence of a prime number between 2 n  and ( )21n +  also means existence of an even number twice the prime in the 
range ( 2 22 2 2 4n p n n< ≤ + ). This implies in this range there should also be an even number that is twice a prime number. The 
effectively means if n is even r should be odd and versa [9,10].  

Legendre’s conjecture implies the maximum gap between primes for numbers between 
2 n and ( )21n +  is given by:

2 2
max ( 1) 1 2 2g n n n≤ + − − = +                                                                                             12

This means the minimum number of primes from 1 to  is given by:

2

min
( 1) 1

2 2
n

n
π +

≥ −
+

                                                                                                                 13

Thus between 1 and 4:

min 1.828427125π ≥

Between 1 and 9:

min 2.67423614π ≥

Between 1 and 100:

min 21.36067977π ≥

For numbers between 1 and one million:

min 706.1067812π ≥

This means the minimum number of primes between 2 n  and ( )21n + is given by:
2 2

min
( 1) 1

2 2 2
n n

n n
π +

≥ − −
+

                                                                                                                                                                   14
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For numbers between 1 and 4 the minimum number of primes is:

min 0.674234234614π ≥

A positive fraction greater than zero would here implies that the number of primes between 1 and 4 is at least 1.

For numbers between 4 and 9 the minimum number of primes is given by:

min 0.674234234614π ≥

The number of primes is at least one. 

For numbers between 81 and 100:

min 2.26796683π ≥
The number of primes is at least 3. 

From equation 14 we can establish that there is at least one prime number between every consecutive pair of square num-
bers. This verifies Legendre’s conjecture. 
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