所有提交的电磁系统将被重定向到在线手稿提交系统。作者请直接提交文章在线手稿提交系统各自的杂志。

新趋势的无级变速传动系统基于凸轮

伙夫帕蒂尔1v . r . Gambhire教授,。2
  1. 采矿工程学生,机械工程系,Tatyasaheb科莱工程技术研究所Warananagar,印度马哈拉施特拉邦
  2. 机械工程系,副教授Tatyasaheb科莱工程技术研究所Warananagar,印度马哈拉施特拉邦
相关文章Pubmed,谷歌学者

访问更多的相关文章国际创新研究期刊》的研究在科学、工程和技术

文摘

Cam-based无级变速传动是一种传播,允许无限可变传动比的变化在一个有限的范围内,允许发动机持续在一个高效的运营或高性能范围。Cam-based无级变速传动系统是一个传动机构与一组行星齿轮和凸轮安装在载体三个追随者。追随者可以转移与移动装置的三维凸轮机制由于追随者振荡幅度变化。单向离合器使用转移的积极运动追随者行星齿轮。适应机制之间的无级变速输出范围0 to1/4th输入速度。保持一个统一的对于一个给定的一致的输入输出。

关键字

无级变速传动(溶),无级变速传动,积极传播。

介绍

这个传输包含六个独特的组件。这种传播的核心是中央位于三维凸轮。凸轮有一个不断沿着其长度不同的概要文件。在凸轮有三个数量的追随者。每个追随者通过辊安装在从动件与凸轮交互。凸轮表面的追随者举行不回位弹簧负载。追随者是可旋转的安装在一个载波盘子,传播独特的主要组成部分。航母是用于支持追随者。在每个追随者,有固定行星齿轮与太阳齿轮啮合。Cam-based早期的第六个也是最后一个独特的组件是一个单向离合器位于内部的每一个行星齿轮。 These clutches are responsible for rectifying the oscillations generated by the cam and followers. The one way clutch transmits only positive motion. The planet gears are meshed with a sun gear. The three planet gears output combines in a sun gear & which gives output. A Cam-based Infinitely Variable Transmission system allows a user to vary the speed between input & output progressively from one positive value to another. Unlike, conventional transmissions the selection of gears is not restricted to a finite number of ratios. The Cam-based Infinitely Variable Transmission system can be used in industrial drive applications to improve performance, economy & functionality.

二世。文献综述

之前工作通过使用棘轮驱动无级变速传动系统由贝尼特斯[1]他提出了传播的特点是其不均匀一致的输入输出。相似之处在于,有一个设备,不同的旋转量的几个行星齿轮载体。这种设计使用一个开槽板驱动行星围绕太阳齿轮齿轮。通过不同偏心率,e,开槽板的关于“导槽”,地球的角速度太阳齿轮会有所不同,因为他们环游。每个行星齿轮连接到第二个星球通过单向离合器;这个星球上最大的速度将环形齿轮传递运动。同样,皮雷[2]包含了大量的杠杆,轴和开槽板来完成相同的任务。皮雷和贝尼特斯都相似的概念,但不同的实现是一个设计被松本[3],这是商业上可用的名字“Zero-Max”。这个传输使用几个往复四连杆结构振动索引离合器。几个链接系统之一。 An input is applied to the crank mechanism on the left which oscillates the first four bar mechanism. A second four bar loop converts these oscillations to a continuous output rotation through a number of one way clutches. Like Benitez‟s and Pires' CVTs though, it exhibits a non-uniform output for a uniform input. In the same vein as other ratcheting drives, Douglas Magyari [4] develop an Infinitely Variable Transmission comprising a pair of rotary, generally conical, torque-transmitting members, each being mounted for rotation on its geometric axis, the angularity of axes, one with respect to the other, being variable, the outer surfaces of each member having torque transmitting needles extending outwardly from the generally conical surface, the needles of one member meshing with the needles of its companion member, the needles being capable of flexing whereby torque may be transmitted through the rotary members without frictional sliding motion at the area of meshing engagement of the needles, the angularity of one member with respect to the other permitting a wide torque transmitting ratio range. Similarly, for improving torque transmitting capacity Peter Eichenberger [5] has worked which having a driving sheave assembly connected to the crankshaft of an internal combustion engine and coaxially mounted with respect to the crankshaft, an intermediate shaft upon which is mounted a driven pulley assembly, a drive chain or belt drivable connected the pulley assemblies, high range and low range gearing coaxially disposed with respect to the driven pulley assembly, a countershaft arranged in parallel and spaced disposition with respect to the secondary shaft wherein the countershaft is adapted to support forward and reverse gearing and improved bearing means for supporting the countershaft and wherein a differential output assembly connects torque output elements of the countershaft to each of two axle half shafts thus providing improved torque transmitting capacity with reduced overall dimensions due to the reduced shaft spacing. Wayne Paul Bishop [6] has worked on Infinitely Variable Transmission by using Forced Way method. This is a unique method of generating variable ratio outputs from a given input of constant rotational speed by forcing one end of a drive shaft to follow a continuous path (way) around a given circle at a constant speed that can then be deformed into curves of varying radiuses that would range from the radius of the given circle to that of the various radiuses (arcs) of various ovals to a final shape of an oblong. Forcing the end of the drive shaft to follow these shapes would result in the driveshaft rotating at different rotational speeds as it transverses the shape. By sampling only the rotational output while moving over the desired portion of the shape one can control the outputs rotational speed which will be some ratio of the input.

三世。基于CAM的无级变速传动系统的基本理论

原则:——这无级变速传动系统均匀运动转化成振动,然后纠正它回到几乎统一的运动。首先,有一个机制,从旋转输入产生振动。这种机制允许调节振荡中风。其次,往复运动由机制如one-way-clutch纠正(或随心所欲)。因此,往复运动是单向旋转整流输出。可以调整的速度转动输出简单的通过调整振动中风。获得一个平滑的输出运动,使用三个out-ofphase追随者。在其最简单的形式,这个传播包含六个独特的组件。这里描述每个组件都是短暂的,见下图。虽然它们的功能可能解释。 The heart of this transmission is a centrally located three dimensional cam. Cam has a continuously varying profile along its length. Around the cam there are three number of followers. Each follower interacts with the cam through a roller mounted on follower. The followers are held to the cam surface when not under load by a return spring. The followers are rotatably mounted on a carrier plate, the third major unique component of the transmission. The carrier plate is used to support the followers as well as change the location of follower with the help of shifter mechanism. On each follower, there is fixed planet gear which meshes with a sun gear. The sixth and final unique component of the Cam-based IVT is a one way clutch located inside each of the planet gears. These clutches are responsible for rectifying the oscillations generated by the cam and followers. The shaft connected to this inner race of the sun gears is simply called the sun gear shaft or output shaft and its sole purpose is to transmit torques from planet gear to sun gears (however usually not at the same time). The one way clutches are located in the planet gears, the sun shaft is directly connected to only one sun gear. These components are labelled on a simplified representation of prototype CAD model in Figure 1.
图像
Cam-based早期诊断可以被认为是一个简单的凸轮和从动件系统附带一个齿轮火车。因此凸轮将作为输入和太阳齿轮轴输出,而运营商保持固定在地面上。在这样的配置中,一个旋转输入凸轮使追随者简单地上下摆动,因为他们持有的凸轮弹簧返回。在这种情况下不旋转凸轮的追随者,因为航母是固定的。由于凸轮的形状和位置的凸轮的追随者,追随者振荡的阶段,也就是说,一个追随者将顺时针旋转,而另一个主要反时针旋转。的阶段振荡的追随者各自来回行星齿轮驱动。它遵循那一个方向振动的行星齿轮将传送到太阳齿轮轴通过离合器的一种方式。总是会因为一个行星齿轮速度方向锁定离合器,一颗行星将传输扭矩太阳齿轮轴。精心设计的凸轮轮廓,行星齿轮的速度可以影响太阳产生平滑、连续的输出齿轮轴没有速度的涟漪。这样的速度剖面在图1中是这样。 When overlaid with the velocity Profile of the other out of phase followers, it would appear as in Graph 2. Graph
图像
它提供了更高的齿轮比率以及大的传动比范围对于一个给定的凸轮偏心。有经验,这是比其他人更难以想象,但是清晰度可以通过想象获得类似的和更多的熟悉,一个行星齿轮组。充分描述其运动,首先一个圆形的凸轮。这将解耦的运动载体和凸轮的追随者,振荡的追随者。一旦这些动力学理解,这只是一小步,重叠追随者振荡运动及其对承运人的影响来理解整个系统。开始,首先考虑一个完美的圆形凸轮。顺时针旋转应用于凸轮是通过单向离合器作为地球上反时针旋转齿轮,但是由于圆形追随者不摆动凸轮的形状。因此速度将不会转移到太阳齿轮即通过单向离合器输出轴。现在考虑一个凸轮,并不是圆的。上面的操作几乎是一样的,一个顺时针旋转凸轮部队的追随者由于摆动凸轮的形状,并不是圆的。 The one way clutch rotate the planet gear in counter clockwise direction. The planet gears are meshes with sun gear i.e. output gear. The sun gear rotates clockwise with reduced speed. The output speed of gear depends upon the position of the follower on non-circular cam. There will be only one follower was considered in the above analysis. This follower, the one under load, is called the active follower. This is because while the active follower is moving up a cam lobe, the second or third followers, called the inactive followers, should be moving down a lobe and will be rotating in a counter clockwise direction with respect to the carrier as a result. A counter clockwise rotation of the attached planet gear will rotate the meshing sun gear further clockwise, in a direction that disengages the one way clutch, Because the sun gear shaft rotates clockwise, they are installed such that they lock up with a counter clockwise application of torque on the sun gear race. Therefore as one planet gear transmits torque to the sun gear, the second is freewheeling faster in the same direction, but one gear is always engaged with the sun gear shaft.

第四。凸轮轮廓和速度变化的运动合成的机制优化输出

传播的行为是高度依赖于凸轮轮廓。这个概要文件结合一个恒定的速度部分。代理行星的行星齿轮驱动输出,通常是最大的行星齿轮转动速度对承运人。它也可能最大的行星齿轮速度行驶方向,方向单向离合器进行。凸轮轮廓的一部分,一个追随者,因此行星齿轮,是活跃的称为代理配置文件。3600年凸轮旋转,减少的速度1/4th所有活动的累积提升为一个周期900追随者。因此追随者的总和在活跃的凸轮旋转凸轮的追随者的一个周期。因此一个追随者运动等于900除以追随者的数量。追随者的数量是3所以每个追随者应该在300年振荡。凸轮从动件的位置和速度曲线,如图3所示。
图像
从动件加速度曲线梯形类型因此加速度是恒定当追随者也因此提高速度常数。速度和加速度不断减少当跟随者地位降低。加速度和速度曲线取决于追随者的位置。
图像
三个追随者速度概要文件传输是基于一个偏移量,如图4所示。凸轮的追随者振动方向相同,因为它旋转。代理的所有追随者的速度是恒定的。当从动件凸轮轮廓的上升速度是常数以及追随者位置降低速度突然降低。一次一个追随者是在上升,因为它降低同时另一个追随者上升所以没有振荡输出速度保持不变。太阳齿轮集中,它将会导致行星齿轮旋转。这个操作类似于凸轮和从动件安排的凸轮凸轮和从动件的基础看,因此系统可以建模为一个geartrain。凸轮是中央位置,当旋转,导致至少一个从动旋转的方向,从事离合器。齿轮传动比之间的关系对太阳和行星齿轮的一种有效的追随者和凸轮之间的比例。这种有效的比例捕捉凸轮之间的交互和追随者在当前文件。 This effective ratio is essentially the collective amount of the followers rotate in one direction for every revolution about the cam is four and is therefore analogous to the gear ratio.

诉CBIVT上测试和试验

图像
试验要在Cam-based无级变速传动系统确定各种特征如转矩和速度,力量和速度和效率。审判行为是通过使用绳制动发电机米,滑轮,绳子,体重提供锅在输出轴上。测试过程:电动马达作为输入源,使用电子变速器旋钮让&稳定在一定的速度运行机制。在输出轴的地方滑轮绳dynobrake滑轮,在锅里加上100年通用汽车重量,记下这个负载的输出速度和转速表的帮助。添加另一个100年通用汽车重量成锅&读数。汇总的数据观察表。计算功率,扭矩特性。测试结果:
图像
应用程序:-速度对机床主轴驱动:机床主轴需要赶出各种速度取决于大小的工作和材料被削减。在这种情况下可以使用Cam-based无级变速传动系统以及机头给无限变速。饲料驱动机床幻灯片:机床幻灯片可以移动速度不同传授给运动到刀具使用这个Cam-based无级变速传动系统。变速传动流水线输送机的自动组装厂。变速传动装置在自动切换链接和挑选和地方型机器人设备。瓶灌装工厂。自动售货机的索引机制。

六。结论

Cam-based无级变速传动系统使变速比。这是新发展传统的齿轮箱。溶Cam-based允许附加设备完全独立的旋转速度比由于附加设备的效率增加。溶Cam-based给输出的速度在0到1/4th输入速度。这个系统统一的输出是一个独特的能力。Cam-based行动脉系统有非常可靠的技术和模型是有最大效率87%。它非常干净,低体重和紧凑的仪器。

引用

  1. F.G.贝尼特斯,J.M.情歌,J.M. del Castillo”无级变速传动棘轮驱动类型的基于单向离合器”Mechancial设计的杂志,2004年7月,126卷,pg.673 - 682。
  2. 碰头Fitz P.B.皮雷,“齿轮无级变速传动汽车应用程序”,SAE纸没有。910407年,页1 - 7 1991。
  3. 松本,n .井上y Tsukada,“自行车无级变速传动系统”,美国专利申请20030221892,2003。
  4. 道格拉斯·Magyari“无级变速传动”专利申请出版,1999年11月01。
  5. 彼得•Eichenberger“双重范围无级变速传动”在专利申请出版,在07年7月,1988年。
  6. 韦恩·保罗主教,“正传动无级变速传动”专利申请出版,2011年8月04。
  7. LOHR,查尔斯,史蒂文森,格雷戈里,“无级变速传输、方法、总成、半成品和零部件”专利申请公布,12月10日,2009年。
  8. Dieter Hahne论文提出“无级变速传动汽车车辆动力传动系统”专利申请公布,2月21日,1984年。
  9. 保罗·k·科罗内尔合金提出了论文“双同心积极传播无级变速旋转运动”在专利申请出版,1992年11月16日。
  10. 布莱恩·安德森提出论文”“无级变速传动系统积极参与的一个调查在杨百翰大学。哈利的情人。,2005年8月。
  11. 机械设计的课本V.B.班达里。(第三版;没有。330 - 346页,501 - 517,564 - 569,650 - 688)。
  12. 课本的„机械工程DesignA¢A€ŸJoseph E Shigley。(第八版;没有。550 - 582页,654 - 692)。
  13. PSG设计数据手册。:-(页面1.10和1.12。- - - - - - 1.17)
  14. 课本的„机DesignA¢€P.C.SharmaŸ的。(第九版;没有。423 - 482页,566 - 579)。
  15. 课本„理论的是MachineA¢€S.S.RatanŸ。(第三版;页209 - 230)。