所有提交的电磁系统将被重定向到在线手稿提交系统。作者请直接提交文章在线手稿提交系统各自的杂志。

微藻的大规模生产使用废水作为补充和提取生物油通过酯交换

g . Krithika1,纳娑Satheesh2
  1. 学生,生物技术、圣十字学院(自治),Tiruchirappalli,泰米尔纳德邦,印度
  2. 主任Genewin生物技术、Hosur泰米尔纳德邦,印度
相关文章Pubmed,谷歌学者

访问更多的相关文章国际创新研究期刊》的研究在科学、工程和技术

文摘

生物燃料生产的发展创造了更多的意识研究由于石油价格的快速增长和日益增长的环境问题。微藻聚集注意力转向生物燃料的生产。酯交换过程中藻油或脂肪转化为脂肪酸。因为他们的高生物量和脂质积累,微藻适合生物石油工业的生产水平。脂质含量为28.22±1.38%,碳水化合物16.8%,蛋白质58.2%,小球藻pyrenoidosa。石油中提取的数量被发现25.8毫升(备选媒体)AM2 AM1和20.6毫升。pH值7.8被发现为AM2 AM1和7.6。在这项研究中,在家禽中扩大小球藻pyrenoidosa废水做了肥料和analysingparameters的增长和生产生物油的小球藻pyrenoidosa已经从家禽中扩大废水进行了检查

关键字

小球藻pyrenoidosa生物油、脂质、碳水化合物,蛋白质,酯交换,废水。

介绍

微藻是sunlight-driven细胞将二氧化碳转化为潜在的生物燃料,食品、饲料和高价值的bioactives。微藻可以提供基于石油燃料的替代品而不与作物竞争。Microalga是一个经济和潜在的生物质能原料[12]。小球藻pyrenoidosa单细胞绿藻,生长在淡水。c . pyrenoidosa比其他植物含有更多的蛋白质和叶绿素。像任何蓝绿藻,螺旋藻可以被有毒物质污染的毒素。它还可以从水中吸收重金属增长[7]。衣藻属海藻的微观,单细胞绿色植物(藻类),生活在淡水。人们已经发现,他们可以用来产生氢气从光,水,和基本的营养。生成大量的氢的可能性,这是一种可再生燃料,廉价和丰富的来源是由衣藻[11]。一个关键growthA¢€限制因素是碳,通常作为二氧化碳发生在提供丰富的环境。 Supply of pure CO2 into algae cultivations is expensive and not an encouraged option for large scale algae production. However, through a lower cost option, algae have the ability to capture CO2 from combustion gas and from natural gas operations and hold the opportunities to recycle CO2 [15]. The transesterification process is the reaction of a triglyceride (fat/oil) with an alcohol to form esters and glycerol. A triglyceride has a glycerine molecule as its base with three long chain fatty acids attached [4].Almost all biodiesel is produced in a similar chemical process using base catalysed transesterification as it is the most economical process, requiring only low temperatures and pressures while producing a 98% conversion yield. Biodiesel is, at present, the most attractive market alternative among the non-food applications of vegetable oils for transportation fuels. Bio oil can be used in pure form. Bio oil higher lubricity index compared to petroleum diesel and can contribute to longer fuel injector life. Bio oil is pollution free solvent than petroleum diesel and has been known to break down deposits of residue in the fuel lines of vehicles that have previously been run on petroleum diesel. Chemical solvents are often used in the extraction of the oils [10]. In this study the growth of Chlorella pyrenoidosa is scaled up from the results obtained by various trials and the extraction of bio oil is done successfully by transesterification process.

二世。材料和方法

藻株和废水的收集:如小球藻藻菌株pyrenoidosa,螺旋藻和Chlamydomonaswere收集从NCIM,浦那和维护适当的选择性培养基Genewin生物技术,Hosur。家禽废水来自Maruthi孵化场,Hosur和制革厂废水从皮革行业Vanitech获得Vaniyambadi。测定三种藻类物种:脂质含量的提取和测定细胞内脂质进行根据标准协议在前面的文献[1]和[3]重力测量。冷冻干燥藻生物量(50−100毫克)与甲醇提取三次含有10% DMSO(体积分数)搅拌下50分钟。然后混合离心机(2000 g, 10分钟),和上层的移除。残渣是re-extracted两次用乙醚和正己烷的混合物(体积比1:1)30分钟。后拔牙、己烷和水被添加到上层的相结合,以获得比1:1:1:1(体积比),上述四种溶剂。混合物然后离心10分钟,动摇了上层有机层收集。水相re-extracted两次后用乙醚和正己烷的混合物(体积比1:1),有机相结合,蒸发干燥。然后再溶解少量的己烷。脂质溶液转移到预先称量好的瓶,最初在水浴蒸发(30°C)使用一个旋转蒸发器,然后高真空下干燥。干残渣在电子微量天平称重。 Determination of Protein Content in the three Algae Species The Lowry method was used to measure the protein content of the pre-treated biomass [2]and[16].The absorbance of the sample was measured at a wavelength of 750 nm in a spectrophotometer [5]. Reagents Alkaline copper sulphate solution was prepared freshly by mixing 1.0 mL of 0.5% CuSO4.5H2O in 1% Potassium sodium tartarate with 50.0 mL of 2% sodium carbonate in 0.1 N NaOH. Diluted Folin-phenol reagent was prepared by diluting Folin-ciocalteu reagent obtained with an equal volume of glass distilled water. Procedure To one millilitre of protein solution, 5.0 ml of alkaline copper sulphate solution was added and allowed to stand at room temperature for 10 minutes. Then 0.5 ml of diluted Folin-phenol reagent was added and mixed well[8]. The solution was allowed to stand for 30 minutes and absorbance was read at 500 nm using a Hitachi UV 2001 spectrophotometer. BSA (Sigma fraction V) was used as standard. The protein content of the biomass was calculated using the following equation: Protein (%, w/w) = CVD/m x 100 where C is the protein concentration (mg L-1) obtained from the calibration curve, V is the volume (L) of the lysis buffer used to resuspend the biomass, D is the dilution factor and m is the amount of biomass (mg). Determination of Carbohydrate Content in the Three Algae Species Carbohydrates were extracted and estimated as the procedure given by Roe and Indian Pharmacopeia. Freshly harvested, frozen thalli were used within two days of collection. Known quantity of the alga was ground in a glass mortar and pestle with 80% ethanol and filtered through Whatman’s No. 1 filter paper. The filtrate was centrifuged at 8000 X g for 20 minutes and the supernatant was made to 5.0 ml with 80% ethanol. The final volume of the extract was then made up to 10.0 ml by adding distilled water. To 1.0 ml of the above sample, 4.0 ml of anthrone reagent was added by the sides of the test tube and heated in a boiling water bath for 10 minutes. The tubes were cooled to room temperature and absorbance was read at 620 nm using UV spectrophotometer. A reagent blank was run simultaneously. Glucose was used as the standard [9].
蒽酮试剂蒽酮(50.0毫克)和硫脲(1.0 g)被添加到100.0毫升的72%冷硫酸和存储在一个黑暗的瓶子。刚做好的试剂用于每一个估计。试验完成污水和化肥:两种类型的废水与替代媒体选择和试验(AM1和AM2)肥料中可用以下比率的N, P, K):一个¯‚·AM1: 0:52:34(补充与尿素氮)¯‚·AM2: 13:0:45(补充磷酸与超页)测量各种参数必要TWW和PWW藻类的生长。小球藻pyrenoidosawas试用过各种比率和AM1 AM2肥料在pH值6,7,8。很清楚地看到,小球藻的TWW没有促进经济增长的比率TWW高于化肥。PWW实验进一步继续如此。改变TWW的生物参数,可以将小球藻生长在不同比率的TWW随着肥料补充。PWW曾经用于小球藻的生长生理参数进行了分析。各种试验这种PWW: AM1和PWW: AM2比率0:50,50:0,起誓20:30,40:10,晚使用两个不同的肥料检查小球藻的生长的合适的结合率pyrenoidosa。

估计小球藻的生长与二氧化碳:

正如所有光合生物,藻类利用二氧化碳作为碳源。没有二氧化碳的增长可以发生在缺乏。藻类生物量的平均化学成分的基础上,还需要大约1.8吨二氧化碳增长1吨生物质。方法:二氧化碳从一个高高的烟囱收集和发送通过电机直接发送CO2to海藻瓶。并排的控制限,保持记录和相应的OD值每隔1小时。每个[6]。

生物油生产:

收集到的小球藻在雾中扩展的媒介。藻类的培养的必要因素是光、温度和营养。培养的藻类生长,然后扩大到25升泡沫顶部为了实现大规模生产的藻类。中用于小球藻的生长是雾的媒介。海藻是生长在泡沫上,藻类生物质收集原油开采。藻类分离絮凝是一个可靠的方法。文化pH值的影响进行了絮凝效率通过调整文化酸碱从10 pH值10.6使用5 M氢氧化钠(氢氧化钠)或5米氢氧化钾(KOH)。基地被添加到文化通过搅拌使用磁棒搅拌器(38毫米),激动在200 rpm,以便稳定增加,pH值[14]。生物质生物是植物的材料是专门叫木质生物质。过滤后的生物质收集和体重。藻类与电动机和杵地面和地面海藻干了20分钟80°C的释放水的孵化器。 Hexane and ether solution (20 and 20 mL) were mixed with the dried ground algae to extract oil. Then the mixture was kept for 24 h for settling.

酯交换过程:

酯交换反应是基地加快。水的存在会导致不良基水解,因此必须保持干燥bytransesterification反应过程。包含解决方案是动摇的锥形瓶3 h电动振动器在300 rpm。摇晃后的解决方案是保持16 h解决生物柴油和沉积物层清楚。生物油是由瓶分离器分离沉降。生物柴油被5%的水直到变得干净自清洗可以消除多余的杂质,去除各种混合物的碎片。
0.25克氢氧化钠与24毫升甲醇混合,搅拌连续20分钟。催化剂和甲醇的混合藻油的倒锥形烧瓶和tranesterification过程允许发生。生物由一个烧瓶分离器与沉降分离。生物与5%无菌水清洗,直到它变得干净。生物油干用干燥器、空气为12小时。收获已经声称贡献20 - 30生产总成本的百分比生物质[6]。生物油生产用量筒测量;pH值测量和存储进行分析。

三世。结果与讨论

测定脂质、蛋白质和碳水化合物

脂质生理实验和生物质生产过程中产生。在这里,脂质含量估计三种。发现了脂质含量高的小球藻pyrenoidosa 28.22±1.38%其次是螺旋藻为24.00±4.49%和Chlamydomonas15.61±0.63%。蛋白质的一大部分生物质。洛瑞的方法是最准确的方法之一[5]量化蛋白质。牛血清白蛋白(BSA)是最常用的标准。蛋白质含量是最高58.2%的小球藻pyrenoidosa螺旋藻的52.6%和Chlamydmonas 48%紧随其后。碳水化合物浓度测定是colorimetricmethod基于水解碳水化合物溶液之间的反应和染色试剂开发色彩,可发觉的电磁波谱的可见范围。在小球藻pyrenoidosa碳水化合物含量最高的16.8%和最低的12.4%的螺旋藻。
图像
参数具体使用的水质分析和不相关的小球藻的生长。所以,PWW是用于进一步的试验和生物石油生产。

二氧化碳对藻类的生长实验

二氧化碳的实验目的是为了检查使用二氧化碳小球藻的生长。一个控制也检查不使用二氧化碳。的吸光度是一段5个小时检查二氧化碳是否帮助小球藻生长[13]。
图像
扩大了在上面的比率在泡沫顶部和小球藻的生长被认为在比率。过了大约1周的小球藻达到它的最大增长率。在泡沫顶部扩大:扩大PWW是用AM1肥料的比例起誓的小球藻被允许扩张。花了十天的小球藻达到它的最大增长。的扩大PWW完成的AM2肥料比二五25和小球藻被允许扩张。花了十天的小球藻达到它的最大增长。
图像
观察到的平均吸光度是1.463±0.0039十天显示在PWW AM1的效率。观察到的平均吸光度是0.71815±0.0239十天显示AM2并不太效率PWW AM1相比。是氯化铝絮凝:絮凝剂用于藻类和水的分离在泡沫上生物量的集合。物种通过重力分离涉及的絮凝。各种技术用于絮凝是减少使用酸性pH值为4,使用碱性pH值增加到11,添加硫酸亚铁,aluminiumsulphate、氯化铁。发现降低pH值4使用酸似乎帮助絮凝速度氯化铝紧随其后。试验了,然后得出结论,絮凝方法藻类在大规模生产。海藻收集和干了20分钟80°C的释放水的一个指标。醚和正己烷溶液(20毫升)与干燥的地面混合海藻中提取石油。混合物保持24小时。 for settling. The Biomass was collected after the Flocculation process and the collected biomass was weighed.
图像
收集到的生物质蛋糕从AM1干燥后观察21克更高的AM2相比,这是进一步用于生物石油生产。
图像

四。结论

得出结论,从藻类物种产生的生物油可高效环保,无污染。藻类物种在自然界中以其高可用性,可再生能源和低成本,它可以用来生产生物油以廉价的方式。在这项研究中,石油是由藻类有效地通过酯交换。提取被发现的石油量25.8毫升为AM2 AM1和20.6毫升。pH值7.8被发现为AM2 AM1和7.6。通过这种方式,小球藻pyrenoidosa可以作为可再生能源的来源。

引用

  1. Chiara Bigogno Inna Khozin-Goldberg,萨米Boussiba AvigadVonshak,科恩Zvi,“脂和脂肪酸成分的绿色油质的海藻parietochloris incisa,花生四烯酸”的富有的植物来源、植物化学、卷。60,497−503、2002页。
  2. 墨菲,D.J.,and Prinsley, R.T., “Interaction of Triton X-100 with the pigment– protein complexes of photosynthetic membranes”, Journal of Biochemistry, Vol.229, pp. 31–37, 1985.
  3. 布莱,例如,戴尔,j,“A rapid method of total lipid extraction and purification”, Canadian Journal of Biochemistry and Physiology, Vol.37, Issue 8, pp. 911−917, 1959.
  4. Bertoldi,足球俱乐部,Sant'Anna, E., and Barcelos-Oliveira, J.L., “Chlorella vulgaris cultivated in hydroponic wastewater”, Acta Horticulture, Vol. 843, pp. 203-210, 2009.
  5. 彼得森,基准线,“Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall”, AnalyticalBiochemitry, Vol. 100, pp. 201–220, 1979.
  6. IvayloSirakov、凯蒂Velichkova GalinNikolov,“海藻粉的效果(螺旋藻)的生长性能和胴体参数虹鳟鱼(Oncorhynchusmykiss)”,生物科学和生物技术学报,151 - 156年,2012页。7所示。Blinkova,石油醚,Gorobets, O.B., and Baturo, A.P., “Biological activity of Spirulina”, Journal of Microbiology, Epidemiologyand Immunobiology, Vol. 2, pp. 114-118, 2001.
  7. 利兹,M.B.,and Paxman, S., “Modification of the Lowry procedure for the analysis of proteolipid protein”, Analytical Biochemistry, Vol. 47, pp. 184–192, 1972.
  8. Rajasulochana, P。,Krishnamoorthy, P., and Dhamotharan,R. “Biochemical investigation on red algae family of KappahycusSp”,Journal of Chemical and Pharmaceutical Research, Vol. 4, Issue 10, pp. 4637-4641, 2012.
  9. 凯,R.A.,“Microalgae as food and supplement”. Critical Reviews of Food Science andNutrition, Vol. 30, pp. 555–573, 1991.
  10. S·达奇尔的距离。,and Trabuco, E.C., “The UNI3 Gene is required for assembly of basal bodies of Chlamydomonas and encodes d-tubulin, a new member of the tubulin superfamily”, Molecular Cell Biololgy, Vol. 9, Issue 6, pp. 1293-1308, 1998.
  11. 汗,s.a. Hussain M.Z.普拉萨德,S。,and Banerjee,U., “Prospects of biodiesel production from microalgae in India”, Renewable Sustainable Energy Reviews,Vol. 13, Issue 9, pp. 2361-2372, 2009.
  12. Sawayama,井上,S。溺爱,Y。,and Yokoyama,S., “CO2 fixation and oil production through microalga”, Energy Conversion and Management,Vol. 36, pp. 721-731, 1995.
  13. SriharshaKarampudi, Kamal Chowdhury”,媒体对藻类的生长的生物燃料生产的影响”,NotulaeScientiaBiologicae,卷。3,问题3,33-41,2011页。
  14. VinayakPathak, V。Chopra, A.K.,Richa Kothari, Tyagi, V.V., “Growth characteristics of chlorella pyrenoidosa cultured in nutrient enriched dairy wastewater for pollutant reduction and lipid productivity”,Recent Advances in Bioenergy and Research, Vol. 2, pp. 310 – 317, 2013.
  15. Hurkman, j•,and Tanaka,C.K., “Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis”, Plant Physiology, Vol.81, pp. 802–806, 1986.