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ABSTRACT
This article is dedicated to the nonlinear second-order partial differential 
equations of parabolic type with up- perturbation, we establish conditions on 
the nonlinear perturbation of the parabolic operator under which the solutions 
of initial value problems do not exist for all time, that is the solutions blow up.

INTRODUCTION
In Euclidean space ,lR l > 2 , let us consider second-order parabolic partial differential equation in the form   

, ,..., ,....,
( , ) ( , ) ,p

k kj j k k
k j l k l

u a t x b t x u u
t = =

 ∂
= ∇ ∇ − ∇ + ∂  

∑ ∑
1 1

   (1)

with the initial condition 

( ) ( ),u x u x= 00 ,

where ( ) ( ) [ ), ; , , ,lu t x t x R l∈ ∞ × >0 2  is unknown function[1-10]. We are assuming that ( ),kja t x  is a measurable symmetric uniformly 
elliptic matrix of l l×  dimension so that there are , :ν µ ν µ< ≤ < ∞0   such that the condition

,...,
( , )

l l

i ij i j i
i ij l i

a t xν ξ ξ ξ µ ξ
= = =

≤ ≤∑ ∑ ∑2 2

1 1 1

holds for all ,lx R l∈ ≥ 3 . The function [ )( , ) : , ,l lb t x R R l∞ × ≥0 3  is linear perturbation and ,p l
l

< < + ≥
21 1 3 . Here module of

coefficients  b  belongs to N2  [1, 4-7]. 

The best-known results for equations of this type can be found in the article [11], where the perturbation has to satisfy conditions 
for the existence of a solution that has been formulated in [10] by S.I. Kametaka and O. A. Oleinik on page 588, namely that sum 

,....,
( , )k

k l
b t x L∞

=

∈∑
1

 or in other words coefficients must be bounded functions or more general belong to Lp functional classes, in 

the presented work perturbation can belong to class Nash N2, which is wider than Lp. Since substantial progress has been made 
in the understanding of the classes of perturbations of parabolic operators, especially in the case of linear equations with time-
independent coefficients [1,4,9,10].  In this article, we consider the equation (1) under wider conditions on the perturbation than [10, 

11], for example, the function b can be such that ( ),l
locb L R lε+∉ >2 1 2  [1]. 

To show the boundary of the new theory, let us consider the following example [1,12]:

( )
, ,..., ,...,

( ) ,k kj j k k
k j l k l

u a x u b t x u
t = =

∂
= ∇ ∇ − ∇

∂ ∑ ∑
1 1

under the following condition on linear perturbation   

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

, , , ,

, , , , , , , ,

R

R R

b t a t b t t dt

C a t t t dt M t t dt

ϕ

ϕ ϕ ϕ ϕ
+

+ +

−⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ≤

≤ ⋅ ⋅∇ ⋅ ∇ ⋅ + ⋅ ⋅

∫

∫ ∫

21

where there are constants C,4 and M < ∞ . For instance, b can be a vector function that satisfies the following condition
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( )
,...,

, lnk
k l

lb t x C M e
t tx

ν
−

=

  − ≤ + +          
∑

3
2 2

2 2
2

1

2 1 1 1
2

.

Let the matrix aij be diagonal then the differential operator be b−∆ + ⋅∇ , here  l xb
x

β−
= 2

2
2

,  β< <0 4 . These conditions are 

more general than the sufficient conditions that were formulated by S.I. Kametaka, O. A. Oleinik [10], and by V. V. Chistyakov [11]. 

Since the results of V. V. Chistyakov are founded on classical results of S. I. Pokhozhaev and S.I. Kametaka O. A. Oleinik [8,10,12], let 
us consider the simplest example in which the sufficient conditions are not satisfied, however, the solution exists. 

Let us consider the elliptic equation 

,
,

l

ij
i j i j

a d u a u
x x=

∂ ∂
≡ =

∂ ∂∑2

1
0

where the matrix a is 
| |

i j
ij ij

x x
a b= +  , ,lb lχ

χ
−

= − + < ≥
−

11 1 3
1

 [1, 16]. 

We calculate 

( )
| |

xa b l
x

∇ = − 21 , ( ) ,
| |

i j
ij ij

x xba
b x

δ
−
= −

+
1

21
 ( )

| |
la a a b

x
−−  −

∇ ∇ = +  
 

2
11 11 

then we obtain inequality with the best constant   

( ) ( ),lla b W R l
x
ϕϕ ϕ ϕ−

∇ ∇ ≥ + ∀ ∈ ≥
2

2
1

2

21 3
2

  ,

so, if 
l
χβ  = + − 

2

4 1
2

 then ( )a a a PK Aβ
−∇ ∇ ∈1

   with the constant ( )c β = 0 , for β < 4  it is necessary  ( )( ), ,lχ ∈ − −2 2 0  where we 

denote the functional class ( )PK Aβ  according to formula

( ) }{( ) ( , ) : || || ,l l
locPK A f L R d x h f h h a h c h h Cβ β β ∞= ∈ ≤ ∇ ∇ + ∀ ∈1 2

2 0 

where ( ), c Rβ β> ∈ 10 . 

We assume that the initial condition is  ( )u x = =1 1 . As the solutions, we can consider two functions: the first is  1u ≡  - tautological 

constant and the second is | |u x χ=  [16]. If parameter l
s

χ −
= −

2  then  
l
χβ  = + − 

2

4 1
2

 and β ≤ 4  for  p>s in the ball  ( )K1 0  

function  1( (0))pu x L Kχ= ∈  on another hand must hold the following  estimation 
( )( )exp( ) exp ,
s p l

ps
p p s

c tt C t p sβ
β β

− −

→

 
− Λ ≤ < < ≤ ∞   − 

2 2
2

,

where semigroup exp( )pt− Λ  is generated by a linear operator ( )
| |p

xA b l
x

Λ = + − ∇21 
. That means 2

1| | ( (0))
pl

lx L Kχ −∈  but it is 

impossible because 2
1| | (0)

pl
l
locx L Kχ −∉  so the function | |x χ  cannot be a solution and there is only one trivial solution [13]. If β > 4

then the equation a d u =2 0  always has two bounded solutions. Parallel with this equation, we can consider a Cauchy problem 
for a parabolic equation with the same differential operator. Let us assume that the linear operator  p a b−Λ ⊃ ∇ ∇ − ∇  defines over 

( )pD A  generates holomorph semigroup in ( ),p l lL R d x -space. Let ( )b a b PK Aβ
− ∈1

  , we denote n nb bχ= , where nχ  is an indicator 

of ( ){ }: ( )lx R b a b x n−∈ ≤1
   and lim exp( ( )) exp( ( ))p n pn

t b t b
→∞

− Λ = − Λ  uniformly at [ ],t∈ 0 1 . If , ,pβ
β

 
< ∈ ∞ 

−  

21
2

 then there is C0 - 

contraction semigroup, which is generated by the operator A b+ ∇  and the estimates 

( )exp( ) expp p p

c tt
p
β

→

 
− Λ ≤  − 1

,

( )( )exp( ) exp ,
s p l

ps
p p s

c tt C t p sβ
β β

− −

→

 
− Λ ≤ < < ≤ ∞   − 

2 2
2

hold for  , ,p sβ
β

 
≤ < < ∈ ∞ 

−  

21 4
2

, operator sum A b+ ∇  cannot be defined correctly, however, semigroup exists and can be 

defined as a limit  exp( ( )) lim exp( ( )),p p nn
t b t b t

→∞
− Λ ≡ − Λ ≥ 0  in this case it is a definition of the semigroup [14].

So, new results in the theory of semigroups bring about a new understanding of the conditions under which we consider partial 
differential equations of the parabolic type. Thus, arose a problem of rectification of the conditions on the coefficients of PDE 
under which these equations will have a solution in certain functional spaces on more general than in [11]. 

Let us consider a parabolic equation with the Laplace operator and with the critical case of perturbation up, in the form
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pu u u
t
∂

= ∆ +
∂

.

If p
l

> +
21  and an initial value  ,u u≠ ≥0 00 0  is sufficiently small then there is a bounded solution on any bounded interval of time; 

if p
l

< < +
21 1  then for any initial value ( )u x0  the solution blows up on bounded time interval i.e. there is a moment of time t  such 

that ( ), t tu t x →→∞ , the global solution does not exist for a time t  [15,16]. 

The main result of this article can be formulated as follows.

The solution u(t,x) to the Cauchy problem for the equation (1) with the initial condition ( ), ,u x u u= ≠ ≥0 00 0 0  blows up, when  
lp

l
+

< ≤
21  and ( )b PK β∈ .

THE PARABOLIC LAPLACE EQUATION WITH pu  PERTURBATION
In this item, we are going to illustrate methods of the perturbation theory on the example of a parabolic equation with operator 
Laplace.

Let us consider the following Cauchy problem 

,pu a u u
t
∂

= ∆ +
∂

( ) ( ),u x u x= 00 .   (2)

The fundamental solution of  u a u
t
∂

= ∆
∂

 for , lt x R> ∈0  is

( )( , ) exp
l x

p t x at
at

π
π

−  
 = −
 
 

2

24
4

,

for all , lt x R> ∈0 . 

It is easy to show that the integral equation 

( ) ( )( , ) , ( ) , ( , )
t

pu t x p t x u p t s x u s ds= − ⋅ ⋅ + − − ⋅ ⋅∫0
0

is equivalent to the Cauchy problem for the differential equation in the sense that every solution to the integral equation is also 
a solution to the differential equation, and, vice versa, every solution to the differential equation is also a solution to the integral 
equation. 

Theorem. Assuming that ,u u≠ ≥0 00 0 ,  ( )lu L R∈ 1  and lp
l
+

< ≤
21 , any nonnegative solution u(t,x),  to (2) blows up, i.e., there

is a moment of time t >0 0  such that ( ), , , lu t x t t x R= ∞ ≥ ∈0 .

Proof. Indeed, let ( ) ( ) [ ), ; , , lu t x t x R∈ ∞ ×0  be the nonnegative weak solution then we have an equality  

( ) ( ) ( ) [ )( , ) , ( ) , ( , ) , ,
t

p lu t x p t x u p t s x u s ds t x R= − ⋅ ⋅ + − − ⋅ ⋅ ∀ ∈ ∞ ×∫0
0

0 .

We are choosing  t >0 0  such that   ( , )p t ≤0 0 1  and we obtain

( ) ( )( , ) , ( , ) , ( , )
t

pu t t x p t x u t p t s x u s t ds+ = − ⋅ ⋅ + − − ⋅ + ⋅∫0 0 0 0
0

Then,

( ) ( )( , ) , , ( , )
t

pu t t x Cp t t x p t s x u s t ds+ ≥ + + − − ⋅ + ⋅∫0 0 0
0

and

( ) ( )( , ) , , ( , )
t

pu t t x C p t x p t s x u s t dsτ+ ≥ + + − − ⋅ + ⋅∫0 0
0

,

thus it is enough to show that the solution  

( ) ( )( , ) , , ( , )
t

pu t x C p t x p t s x u s dsτ= + + − − ⋅ ⋅∫
0

«blows up».

We multiply the last equality by p(t,x) and integrate over all space

( ) ( ) ( ), ( , ) , , ( , )
t

pp t x u t x C p t p t s u s dsτ≥ + + − ⋅ ⋅ ≥∫
0

2 0 2

( ) ( ) ( )( )exp , ( , ) .
l

tl l psC a t p s u s ds
a t s

π τ
π

− −   ≥ − + + ⋅ ⋅   −   ∫
2

2 2

0

14 2
4 2
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( ) ( ) ( )exp , ( , ) .
l

tl l psC a t p s u s ds
a t s

π τ
π

− −   ≥ − + + ⋅ ⋅   −   ∫
2

2 2

0

14 2
4 2

Let us denote  ( )( ) , ( , )t p t x u t xϕ =   then we have

( ) ( ) ( )( ) exp ( )
l

tl l pst C a t s ds
a t

ϕ π τ ϕ
π

− −   ≥ − + +   
   ∫

2
2 2

0

14 2
4 2

assume that ( ) ( )
l

t t tφ ϕ= 2 , we obtain

( ) ( )( ) exp

pl l
tl

l
s st C a ds

a sε

ε φφ π
π ε τ

−
       ≥ − +      +      

∫
2 2

2

2

14
4 2 2

( ) ( ) ( )( ) exp ( )
l l

t ll p pt C a s s ds
a ε

εφ π φ
π ε τ

− −−     ≥ − +    +     ∫
2 2 1

22
1 14

4 2 2
.

The last inequality is equivalent to the differential problem

( )
( )( )

( )

l
l p

p
d t t
t dt
φ

φ

− − =  
 

2 1
21

2
,

( )( ) exp
l

l

C a
a

εφ ε π
π ε τ

−   = −  +  

2
2

14
4 2

.

So, for  1<p and ( )l p − ≤1 1
2

 the solution blows up in the bounded time interval. 

NONLINEAR PARABOLIC EQUATION WITH SINGULAR COEFFICIENTS, THE GENERAL 
CASE

We consider the Cauchy problem for the following parabolic equation: 

[ ( , ) ( , ) ] ,p
k kj j k ku a t x b t x u u

t
∂

= ∇ ∇ − ∇ +
∂

( ) ( ),u x u x= 00 .

If the elliptic matrix depends on time, fundamental solutions to the equation 

[ ( , ) ( , ) ]k kj j k ku a t x b t x u
t
∂

= ∇ ∇ − ∇
∂

 can be written in the form  

( , ; , ) ( , ; , ) ( , ; , ) ( , ; , )
t

p t x z p t x z z d p t x y y F y z dy
τ

τ τ η η η τ= − + −∫ ∫1 0 0 ,

where ( ) ( )( , ; , ) 2 exp ,
t

lp t x y ix a y d d
τ

τ π η γ η γ η−  
= −  

 
∫ ∫ 2

0  are fundamental solutions to the equation [ ( , ) ] ( , )t k kj ja t y u t x∂ −∇ ∇ = 0 , here 

( , ; , )F y zη τ  is the heat kernel density. 

Definition. Let χ  be positive constant, function ( )l
locf L R +∈ 1 1  belongs to Nash class N χ

ϕ  if exists  h>0 such that 

( ) ( )( ); , ; ,n f h n n f hϕ ϕ ϕχ χ+ −≡ + < ∞ , where 

( ) ( ) ( ) ( ),
; , sup exp ( , )

l
s h

z s s

z dn f h ess f
s s sϕ

τχ τ
πχ τ χ τ ϕ τ

−+
+

   ⋅ −
 ≡ − ⋅    − − −   

∫
221

4 4
,

( ) ( ) ( ) ( ),
; , sup exp ( , )

l
t

z t t h

z dn f h ess f
t t tϕ

τχ τ
πχ τ χ τ ϕ τ

−

−

−

   ⋅ −
 ≡ − ⋅    − − −   

∫
221

4 4
,

and function  : R Rϕ + +→  satisfies the conditions: ( )ϕ =0 0 , exists number C>0  such that integrals  ( )Ñ

d
ϕ τ

τ
τ∫

0

, 
( )

Ñ dτ
ϕ τ∫

0

, ( )
Ñ

dϕ τ τ
+

′  ∫
0

 
are bounded.

Function ( )l
locf L R +∈ 1 1  belongs to the Nash class  N χ  [16] if there is a limit ( ) ( ) ( )lim ; , ; , ; ,

h
n f h n f h n f hχ χ χ+ −

→
≡ + =1 1 10

0 .  

Lemma 1. Let b N∈ 2  and the matrix a is uniformly elliptic then there are constants c,k such that  

( ; ) ,
t

sA
LL

Be ds cm b kt Lϕ ϕ ϕ− ≤ ∀ ∈∫ 11

2 1

0
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where ( )( ; ) sup ( )
l

t
t

x R

dtm b kt ess e b x
t

∆

∈

= ∫
1

2 2 2

0

 and ( ) ( )D B D A⊃ 1 , and we have inequality for an operator norm ( ) ( )B A cλ λ−

→
+ ≤1

1
1 1

, where  

lim ( )c
λ

λ
→∞

= 0  for arbitrary λ > 0 .

Applying the Jean-Marie Duhamel principle to the differential operator ( , ) ( , )t A t x B t x∂ + + , we obtain equality 

, , , ,( )
t

t s t s t s
s

U P U B P dτ ττ τ= − ∫ ,

Where Ut,s is a propagator of the differential operator ( , ) ( , )t A t x B t x∂ + + , and Pt,s is a propagator of the operator ( , )t A t x∂ + . 

Since ,t sP
→

≤
1 1

1  for all t,s such that  t s k− ≤  for  ,
,

( ) sup ( )
s

t s
s s

B t P dt
τ

ψ
β τ ψ

+

= ≥
= <∫

1
11 0

1 ; using the Fubini theorem, we are obtaining 

( )
,

( ) sup ( , ( , ; , )
l

s

x R s s

b t p t s x dt
τ

β τ
+

∈ ≥
≤ ⋅ ⋅∇ ⋅∫

0
, and then we have inequality 

( ), ( )t sU β τ −

→
≤ − 1

1 1
1 .

Let ( , ; , )p t x s y  be the heat kernel of the linear operator ( , )t A t x∂ − . The heat kernel of the heat equation t∂ − ∆  is the Gaussian 
density G(t,x). Under certain conditions, the operator ( , )t A t x∂ −  can be considered as a perturbation of the operator t∂ − ∆  so 
for the heat kernel ( , ; , )p t x s y  the Gaussian estimations hold. Similarly, the operator ( , ) ( , )t A t x B t x∂ − +  can be considered as a 
perturbation of the operator ( , )t A t x∂ −  and so for the fundamental solution ( , ; , )q t x s y  of the equation 

[ ( , ) ( , ) ]k kj j k ku a t x b t x u
t
∂

= ∇ ∇ − ∇
∂
hold the next estimations 

( , ; , ) ( , ; , ) ( , ; , )const p t x s y q t x s y Const p t x s y≤ ≤ .

So, for arbitrary , , ,lx y R t s T R l∈ − ≤ ∈ > 2  we obtain the following estimations 

( ) ( )( ) ( )

( )( ) ( )
( )

, exp
4

( , ; , ) exp
4

, .

l

l

x y
cG t s x y c t s

t s

x y
q t x s y C t s

t s

CG t s x y

δ

α

πδ
δ

πα
α

−

−

 − −
 − − = − ≤
 − 

 − −
 ≤ ≤ − =
 − 

= − −

2

2

2

2

4

4

Let ( , ; , )q t x s y  be a fundamental solution of the equation 

[ ( , ) ( , ) ]k kj j k ku a t x b t x u
t
∂

= ∇ ∇ − ∇
∂

for , lt x R> ∈0  then we can write integral tautology

( , ) ( , ; , ) ( ) ( , ; , ) ( , )
t

pu t x q t x u q t x s u s ds= ⋅ ⋅ + ⋅ ⋅∫0
0

0 .

Moreover, the perturbation ( , )b t x ∇  must satisfy the following integral estimation 

( )( ) ( )

( )( ) ( )

exp ( , ) ( , ; , )
4

exp ,
4

t l

s

l

x
s b p s y d

s

x y
c C t s

t s

πα τ τ τ τ
τ α

πα
α

−

−

 − −
 − ∇ ≤
 − 

 − −
 ≤ −
 − 

∫
2

2

2

2
0

4

4



 



where constant can be obtained define according to the formula 

( )

( )( ; , ) max ( ) ( )C n v r dtϕ τα ϕ τ ϕ τ
∈

  ′= + +     
∫ ,

and 
, ,

( ; , ) max ( ; , )
c
c

n v r n v rϕ ϕαγ α α
α

α γ
 ∈  

− 

=1
2

, 

а ( ; , ) : ( ; , ) ( ; , )n v r n v r n v rϕ ϕ ϕγ γ γ+ −= + < ∞ ,

where, 

http://en.wikipedia.org/wiki/Jean-Marie_Duhamel
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( )( ) ( ) ( ) ( ),
( ; , ) sup exp ,

4

t l

x t t r

x dn v r ess t v
t tϕ

τγ πγ τ τ
τ γ ϕ τ

−
−

−

 − −
 = −
 − − 

∫
2

24




and

( )( ) ( ) ( ) ( ),
( ; , ) sup exp ,

4

t r l

x t t

x dn v r ess t v
t tϕ

τγ πγ τ τ
τ γ ϕ τ

+ −
+

 − −
 = −
 − − 

∫
2

24



.

Theorem.  Let b N∈ 2  and lp
l
+

< ≤
21  then the solution ( ) ( ) [ ), ; , , lu t x t x R∈ ∞ ×0  to the Cauchy problem 

[ ( , ) ( , ) ] ,p
k kj j k ku a t x b t x u u

t
∂

= ∇ ∇ − ∇ +
∂

( ), ,u x u u= ≠ ≥0 00 0 0

blows up, that means there is a moment of time t >0 0  such that ( ), , , lu t x t t x R= ∞ ≥ ∈0 .

Proof. Assuming that function ( ) ( ) [ ), , , lu t x t x R∀ ∈ ∞ ×0  is a weak solution to the Cauchy problem for the parabolic nonlinear 

equation with the initial condition ( ), ,u x u u= ≠ ≥0 00 0 0 , we write 

( ) [ )( , ) ( , ; , ) ( ) ( , ; , ) ( , ) , ,
t

p lu t x q t x u q t x s u s ds t x R= ⋅ ⋅ + ⋅ ⋅ ∀ ∈ ∞ ×∫0
0

0 0 .

The function ( ) [ )( , ) ( , ; , ) ( ) , , lu t x q t x u t x R= ⋅ ⋅ ∀ ∈ ∞ ×00 0  is a solution to the  Cauchy problem 

( )
, ,...,

[ ( , ) ( , ) ] ,

, ( )

k kj j k k
k j l

u a t x b t x u
t

u x u x
=

∂
= ∇ ∇ − ∇

∂

= ≥

∑
1

00 0

 



and function ( ) [ )( , ) ( , ; , ) ( , ) , ,
t

p lu t x q t x s u s ds t x R= ⋅ ⋅ ∀ ∈ ∞ ×∫
0

0  is a solution to following the Cauchy problem 

( )
, ,...,

[ ( , ) ( , ) ] ,

, .

p
k kj j k k

k j l
u a t x b t x u u

t
u x

=

∂
= ∇ ∇ − ∇ +

∂

=

∑
1

0 0

  



Let us choose a moment of time t >0 0  such that ( , , , )q t ≤0 0 0 0 1  and 

( ) ( )( , ) , , , ( , ) , , , ( , )
t

pu t t x q t x u t q t x s u s t ds+ = ⋅ ⋅ + ⋅ + ⋅∫0 0 0 0
0

0

so we have to show that the solution to the integral equation  

( ) ( )( , ) , , , , , , ( , )
t

pu t x C q t x q t x s u s dsτ= + ⋅ ⋅∫
0

0

blows up.

We multiply the last equality by ( ), , ,q t x 0 0  and integrate over all space

( ) ( ) ( ) ( ), , , ( , ) , , , , , , , ( , )
t

p
x x

q t x u t x cG t q t x q t x s u s dsδ τ
⋅

≥ + + ⋅ ⋅ ≥∫
0

0 0 2 0 0 0 ( ) ( ) ( ), , , ( , )
t

p
l x

cG t C G t x G t s u s dsδ δ δτ
⋅

≥ + + − ⋅ ⋅ =∫
0

2 0

( ) ( ), , ( , )
t

p
lcG t C G t s u s dsδ δτ≥ + + − ⋅ ⋅ ≥∫

0

2 0 2

( ) ( ) ( )( )exp , ( , ) .
l

tl l p
l

sc t C G s u s ds
t s δπδ τ

πδ
− −   ≥ − + + ⋅ ⋅   −   ∫

2
2 2

0

14 2
4 2

( ) ( ) ( )( )exp , ( , ) .
l

tl l p
l

sc t C G s u s ds
t s δπδ τ

πδ
− −   ≥ − + + ⋅ ⋅   −   ∫

2
2 2

0

14 2
4 2

Next, applying Gaussian upper estimation, we have 
( )

( ) ( ) ( )( )

, ( , )

exp , ( , ) .

l

l
tl l p

l

K G t u t

sc t C G s u s ds
t s

δ

δπδ τ
πδ

− −

⋅ ⋅ ≥

   ≥ − + + ⋅ ⋅   −   ∫
2

2 2

0

14 2
4 2

Let us denote 

( ) ( )( ) , ( , ) exp ( , )
4

l

t G t u t t u t
tδϕ πδ

δ

−  − ⋅
 = ⋅ ⋅ = ⋅
 
 

2

24 ,
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Then,

( ) ( ) ( )( ) exp ( )
l

tl l p
l

st c t C s ds
t

ϕ πδ τ ϕ
πδ

− −   ≥ − + +   
   ∫

2
2 2

0

14 2
4 2

take  ( ) ( )
l

t t tφ ϕ= 2 , we obtain

( ) ( )( ) exp

pl l
tl

l
s st c ds

sε

ε φφ πδ
πδ ε τ

−
       ≥ − +      +      

∫
2 2

2

2

14
4 2 2

( ) ( ) ( )( ) exp ( )
l l

t ll p pt c s s ds
ε

εφ πδ φ
πδ ε τ

− −−     ≥ − +    +     ∫
2 2 1

22
1 14

4 2 2
.

Thus, we have obtained the following differential problem  

( )
( )( )

( )

l
l p

p
d t t
t dt
φ

φ

− − =  
 

2 1
21

2
,

( )( ) exp
l

l

c εφ ε πδ
πδ ε τ

−   = −  +  

2
2

14
4 2

.

We can consider the value ( )φ ε  as the initial value of the ordinary differential equation, the solution of this equation blows up 

when   p<1   and ( )l p − ≤1 1
2

 so the solution of the Cauchy problem for the parabolic equation blows up on bounded time interval.

CONCLUSION
In this equation, we have established the condition on the perturbation under which the Cauchy problem for the parabolic partial 

differential equation with pu - perturbation blows up for lp
l
+

< ≤
21 .
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