
Volume 3, No. 3, March 2012

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 9

ENHANCING THE CPU PERFORMANCE USING A MODIFIED MEAN-

DEVIATION ROUND ROBIN SCHEDULING ALGORITHM FOR REAL TIME

SYSTEMS.

H.s.Behera
*1

, Sreelipa Curtis
2
, bijayalaxmi panda

3

*1 Department of Computer Science and Engineering, Veer Surendra Sai University of Technology,

Burla, Sambalpur, Odisha, India

hsbehera_india@gmail.com1

2 Department of Computer Science and Engineering, Veer Surendra Sai University of Technology,
Burla, Sambalpur, Odisha, India

csrilipa@gmail.com2

3 Department of Computer Science and Engineering, Veer Surendra Sai University of Technology,

Burla, Sambalpur, Odisha, India

bijayafouru@gmail.com
3

Abstract: CPU scheduling is the basis of multiprogrammed operating systems. Round Robin CPU scheduling algorithm was considered as the
optimized CPU scheduling algorithm when compared with the traditional FCFS, SJF and Priority scheduling algorithm. But with the elapse of
time, the RR scheduling algorithm was further optimized by using extended or combination of CPU scheduling algorithms to enhance the
efficiency of the CPU. By switching the CPU processes, the operating system can make the computer more productive and therefore choosing an
optimized and efficient time quantum is a very important factor. This paper presents a new CPU scheduling algorithm coined Enhancing CPU
scheduling using a modified mean deviation round robin (MMDRR) scheduling algorithm for real time system. MMDRR is experimentally proven
better than traditional RR, SMDRR and SRBRR by reducing the context switches, average waiting time and average turnaround time significantly.

Keywords: Scheduling, round robin, burst time, waiting time, turnaround time.

INTRODUCTION

Basics:

A computer system consists of four components: the

hardware, the operating system, the application programs

and the users. The hardware – the CPU, the memory, and the

I/O devices – provides the basic computing resources for the

system. To enhance the performance of the CPU, day by day

different scheduling algorithms are developed. An operating

system is a program that manages the computer hardware.

Scheduling algorithm:

The FCFS (First Come First Serve) algorithm being the first
refers that any process that arrives first in the ready queue is
processed first. The second being the SJF (Shortest Job First)
scheduling algorithm where the process having the shortest
burst time is processed first. Following it the priority
scheduling algorithm was developed where each process was
assigned a priority and accordingly the process where
executed. In case of priority scheduling, priority is assigned
to each process and CPU is allocated to the process with
highest priority. Equal priority processes are scheduled in
FCFS order. But the development of the Round Robin
scheduling algorithm was considered as the optimized
algorithm where a fixed slice of time quantum was chosen
and hence the processes were executed accordingly.

Motivation:

In RR scheduling a fixed time quantum is given to all

process that are awaits in ready queue for execution. So the

chance of frequent switches between processes increases by

which efficiency of CPU decreases. On the other hand if the

time slice considered is a large one then waiting time and

turnaround time increases. In order to overcome these above

situations, we have proposed an algorithm that uses a mean

deviation dynamic time quantum concept.

Related Work:

Many research works has been done under this topic to

enhance the performance of CPU. The static time quantum

which is a limitation of RR was removed by taking dynamic

time quantum by Matarneh [3]. SRBRR algorithm [1] uses a

new approach that it is using dynamic time quantum in

which time quantum repeatedly changes with each cycle of

execution. SMDRR algorithm [2] is based on dynamic time

quantum where we use the subcontrary mean or harmonic

mean to find the time quantum for the processes to execute.

Our Contribution:

In this paper, the main objective is to reduce average waiting
time and turnaround time as compared with the RR
scheduling algorithm, SRBRR scheduling algorithm and the
SMDRR scheduling algorithm. For this purpose, we have
developed an algorithm that drastically reduces average
waiting time and turnaround time.

Organization of Paper:

This paper represents a method for reducing context
switching, average waiting time and average turnaround time
using random sorting and dynamic quantum with burst task
component and priority task component. Section 2 describes
all preliminary work. Section 3 presents proposed
approaches. Section 4 shows experimental analysis and
comparison of result. In Section 5 conclusion is given.

H.s.behera et al, Journal of Global Research in Computer Science, 3 (3), March 2012, 9-16

© JGRCS 2010, All Rights Reserved 10

BACKGROUND WORK

Terminology:

A program in execution is called a process. The processes,

waiting to be assigned to a processor are put in a queue

called ready queue. The performance of the CPU mainly

depends upon many factors such as CPU utilization,

Throughput, Turnaround Time (TAT), Waiting Time (WT),

Context Switch (CS), Response Time etc. The utilization of

the CPU is called CPU utilization where we keep the CPU

as busy as possible. The number of processes completed per

unit time is called Throughput. Waiting Time is the sum of

the periods spent waiting in the ready queue. Time from the
submission of a request until the first response is produced

is called Response Time. Turnaround Time is the interval

from the time of the submission of a process to the time of

completion is the turnaround time. Context switch is the

number of times the process switches to get execute.

Scheduler selects a process from queues in some manner for

its execution. In non-preemption, CPU is assigned to a

process; it holds the CPU till its execution is completed. But

in preemption, running process is forced to release the CPU

by the newly arrived process. In time sharing system, the

CPU executes multiple processes by switching among them

very fast. The number of times CPU switches from one
process to another is called as the number of context

switches.

RR Scheduling Algorithm:

 In RR, each ready task runs turn by in turn in a cyclic queue
for limited time slices. It is widely used in traditional OS. RR
is a hybrid model i.e. clock driven model (e.g. cyclic model)
as well as event driven (e.g. Preemption). The performance
of RR algorithm is highly dependent on time slice. For low
time-slice context switching is more and for high time-slice
response time is more. So the time quantum plays most
determining factor for the performance of RR algorithm.

SRBRR Algorithm:

In Shortest Remaining Burst Round Robin algorithm, the

time quantum is taken as the median of the increasingly

sorted burst time of all the processes. The jobs are sorted in

ascending order of their burst time. The time slice chosen is

dynamic time quantum where the time quantum is

repeatedly adjusted according to the remaining burst time of

currently running processes. To get the optimal time

quantum, median of the burst time is taken as the time

quantum.

SMDRR Scheduling Algorithm:

In subcontrary mean dynamic round robin scheduling

algorithm, the time quantum is taken as the subcontrary or

harmonic mean of the increasingly sorted burst time of all

the processes and this change dynamically in every cycle till

the end of processes.

PROPOSED APPROACH:

In our proposed algorithm the time slice taken is the
summation of mean and variance of the increasingly sorted
burst time of all the processes.

Uniqueness of our approach:

In our algorithm, the jobs are sorted in ascending order of

their burst time to give better turnaround time and waiting

time. Performance of RR algorithm solely depends upon the

size of time quantum. If it is very small, it causes too many
context switches. If it is very large, the algorithm

degenerates to FCFS. So our algorithm solves this problem

by taking a dynamic time quantum where the time quantum

is repeatedly adjusted according to the remaining burst time

of currently running processes. To get the optimal time

quantum, the summation of mean and standard deviation of

the burst time is taken as the time quantum.

Our proposed approach:

In the proposed algorithm, when processes are already

present in the ready queue, their arrival time is assigned to

zero before they are allocated to the CPU. The burst time

and the number of processes (n) are accepted as input with

counter value „i‟.

Let TQ be the time quantum. The TQ calculated is the

summation of mean and standard deviation. So, the TQ is

calculated by the following formulae (4) as follows:

Mean = x = 1/n (x1+ x2 + …. + xn) (1)

Variance = σ
2
 = (1/n) Σ (xi - x)2 (2)

Deviation = σ = {(1/n) Σ (xi - x)2}1/2 (3)

TQ = Mean + Standard Deviation

=
 x + σ (4)

 Where n = Total no of processes

x = Set of processes

and (x1, x2, , xn) ϵ X
Time quantum is assigned to each process. The process
having the shortest job is allocated to the CPU. Time
quantum is recalculated with remaining burst time after each
execution of each cycle.

Pseudocode of the proposed algorithm:

H.s.behera et al, Journal of Global Research in Computer Science, 3 (3), March 2012, 9-16

© JGRCS 2010, All Rights Reserved 11

Flow chart of the proposed algorithm:

Illustration:

Given the burst time sequence of the processes as P1= 13,
P2= 35, P3= 46, P4= 63, P5= 97. Initially the burst time of
all the processes were sorted in ascending order which
resulted in sequence P1, P2, P3, P4 and P5. Then the mean of
the above burst time which was calculated to be 51 and
standard deviation to be 31. The summation of mean and
standard deviation was calculated to be 82 and thus was
assigned as the time quantum for all the processes. In the
next step remaining burst time of each process was

calculated after allocating the time quantum. After first cycle
the remaining burst time sequence for above processes
changed to P5=15. When a process completes its burst time,
it gets deleted from the ready queue automatically. So in this
case, the processes P1, P2, P3 and P4 were deleted from the
ready queue. The present remaining burst time were sorted in
increasing order and then the summation of mean and
standard deviation of the remaining burst time was assigned
as the time quantum where we get 15 as the time quantum for
the second cycle. The time quantum 15 was assigned to the
process P5 for execution. This is how the processes are
executed in the ready queue. The above process was
continued till all the processes were deleted from the ready
queue.

EXPERIMENTAL ANALYSIS

Assumptions:

The environment where all the experiments are performed is

a single processor environment and all the processes are

independent. There is equal priority given to all the

processes. All the attributes like burst time, number of

processes and the time slice of all the processes are known

before submitting the processes to the processor. All

processes are CPU bound. No processes are I/O bound.

Also, a large number of processes is assumed in the ready

queue for better efficiency. Since, the cases are assumed to
be close to ideal, the Context Switching Time is equal to

zero i.e. there is no Context Switch Overhead incurred in

switching from one process to another. The TQ is taken in

milliseconds (ms).

Experimental Frame Work:

For the performance evaluation of the proposed scheduling
algorithm, our experiment consists of several input and

output parameters. The input parameters consist of burst

time, arrival time, time quantum and the number of

processes. The output parameters consist of average waiting

time, average turnaround time and number of context

switches.

Data Set:

Two cases were considered for the experiment evaluation.
Case-1 is for processes with zero arrival time. Case-2 is for
processes with certain arrival time. In both case-1 and case-2,
there are 3-subcases i.e. processes are taken in ascending,
descending and random order. In each case, we have
compared the experimental results of our proposed algorithm
with the SRBRR scheduling algorithm, the SMDRR
scheduling algorithm and the traditional round robin
scheduling algorithm with fixed time quantum Q.

Performance Parameters:

The significance of our performance parameters for

experimental analysis is as follows:

Average Waiting time (AWT): For the better performance

of the scheduling algorithm, average waiting time of the

processes should be less.

Average Turnaround time (ATAT): For the better

performance of the scheduling algorithm, average

turnaround time of the processes should be less.

Start

Sort the process

in ascending

order

Calculate TQ

TQ =

((1/n)(x1+ x2 +

…. + xn))

+ {((1/n) Σ (xi -

x)
2
)}

1/2

RQ!= NULL

Pi → TQ

Calculate the

remaining BT of

the processes

Pi having the

least BT is

allocated first.

New process is

arrived and
BT != 0

new process is

not arrived and

BT != 0

New process is

arrived and BT
= 0

Calculate the AWT,

ATAT and CS.

 Stop

Y

Y

Y
Y

N

N

N

N

H.s.behera et al, Journal of Global Research in Computer Science, 3 (3), March 2012, 9-16

© JGRCS 2010, All Rights Reserved 12

Number of Context Switches (CS): For the better

performance of the scheduling algorithm, the number of

context switches should be less.

Experiments Performed:

To evaluate the efficiency of our proposed algorithm

(MMDRR), the output parameters are compared with round

robin (RR) scheduling algorithm, Shortest Remaining Burst

Round Robin (SRBRR) scheduling algorithm and the

subcontrary mean dynamic round robin (SMDRR)

scheduling algorithm. This algorithm can work effectively

with large number of processes. For simplicity we have
taken five processes with ascending, descending and random

order to illustrate our proposed algorithm. Here we have

assumed a constant time quantum TQ equal to 25 ms in all

the cases for RR scheduling algorithm.

CASE 1: With Zero Arrival Time
Increasing Order:
Five process P1, P2, P3, P4, P5 arriving at time 0 with burst
time 13, 35, 46, 63, 97 respectively of each process shown in
table 4.6.1 have been considered. Table 4.6.2 shows the
comparing result of RR, SRBRR, SMDRR and our proposed
algorithm (MMDRR).

Table 4.6.1 Data in increasing order

Processes Arrival Time Burst Time

P1 0 13

P2 0 35

P3 0 46

P4 0 63

P5 0 97

Table 4.6.2 Comparison among RR, SRBRR, SMDRR and MMDRR

Algorithms QT AWT ATAT CS

RR 25 97.4 148.2 11

SRBRR 46, 34, 17 71.6 122.4 7

SMDRR 36, 6, 15, 15,28 108.6 159.4 14

MMDRR 82,15 62.4 113.2 5

 TQ = 25

P1 P2 P3 P4 P5 P2 P3 P4 P5 P4 P5 P5

0 13 38 63 88 113 123 144 169

194 207 232 254

Figure. 4.6.2.1: Gantt chart for RR in Table 4.6.2

 TQ=46 TQ=34 TQ=17

P1 P2 P3 P4 P5 P4 P5 P5

0 13 48 94 140 186 203 237 254

Figure. 4.6.2.2: Gantt chart for SRBRR in Table 4.6.2

 TQ = 33 TQ = 6 TQ=15

P1 P2 P3 P4 P5 P2 P3 P4 P5 P3 P4 P5

0 13 46 79 112 145 147 153 159 165 172 187 202

 TQ=15 TQ=28

P4 P5 P5

 202 211 226 254

Figure. 4.6.2.3: Gantt chart for SMDRR in Table 4.6.2

 TQ=82 TQ=15

P1 P2 P3 P4 P5 P5

0 13 48 94 157 239 254

Figure. 4.6.2.4: Gantt chart for MMDRR in Table 4.6.2

Decreasing Order:

Five process P1, P2, P3, P4, P5 arriving at time 0 with burst
time 86, 53, 32, 21, 9 respectively of each process shown in
table 4.6.3 have been considered. Table 4.6.4 shows the
comparing result of RR, SRBRR, SMDRR and our proposed
algorithm (MMDRR).

Table 4.6.3 Data in decreasing order

Processes Arrival Time Burst Time

P1 0 86

P2 0 53

P3 0 32

P4 0 21

P5 0 9

Table 4.6.4 Comparison among RR, SRBRR, SMDRR and MMDRR

Algorithms QT AWT ATAT CS

RR 25 110.5 150.8 10

SRBRR 32, 38, 16 49.6 89.8 7

SMDRR 23, 19, 18, 26 60.8 101 10

MMDRR 70,16 43.2 83.4 5

 TQ = 25

P1 P2 P3 P4 P5 P2 P3 P4 P5 P4 P5

0 25 50 75 96 105 130 155 162 187 190 201

Figure. 4.6.4.1: Gantt chart for RR in Table 4.6.4

 TQ = 32 TQ = 38 TQ=16

P5 P4 P3 P2 P1 P2 P1 P1

0 9 30 62 94 126 147 185 201

Figure. 4.6.4.2: Gantt chart for SRBRR in Table 4.6.4

H.s.behera et al, Journal of Global Research in Computer Science, 3 (3), March 2012, 9-16

© JGRCS 2010, All Rights Reserved 13

 TQ = 23 TQ = 19 TQ = 18 TQ=26

P5 P4 P3 P2 P1 P3 P2 P1 P2 P1 P1

0 9 30 53 76 99 108 127 146 157 175 201

Figure. 4.6.4.3: Gantt chart for SMDRR in Table 4.6.4

 TQ = 70 TQ = 16

P5 P4 P3 P2 P1 P1

0 9 30 62 115 185 201

Figure. 4.6.4.4: Gantt chart for MMDRR in Table 4.6.4

Random Order:

Five process P1, P2, P3, P4, P5 arriving at time 0 with burst
time 54, 99, 5, 27, 32 respectively of each process shown in
table 4.6.5 have been considered. Table 4.6.6 shows the
comparing result of RR, SRBRR, SMDRR and our proposed
algorithm (MMDRR).

Table 4.6.5 Data in random order

Processes Arrival Time Burst Time

P1 0 54

P2 0 99

P3 0 5

P4 0 27

P5 0 32

Table 4.6.6 Comparison among RR, SRBRR, SMDRR and MMDRR

Algorithms QT AWT ATAT CS

RR 25 108.8 152.2 11

SRBRR 32, 45, 22 50.2 93.6 7

SMDRR 17, 29, 27, 35 99.2 142.6 11

MMDRR 79, 20 43.8 87.2 5

TQ = 25

P1 P2 P3 P4 P5 P1 P2 P4 P5 P1 P2 P2

0 25 50 55 80 105 130 155 157 164 168 193

217

Figure. 4.6.6.1: Gantt chart for RR in Table 4.6.6

 TQ = 32 TQ = 45 TQ=22

P3 P4 P5 P1 P2 P1 P2 P2

0 5 32 64 96 128 150 195 217

Figure. 4.6.6.2: Gantt chart for SRBRR in Table 4.6.6

 TQ = 17 TQ = 20 TQ = 27

TQ=35

P3 P4 P5 P1 P2 P4 P5 P1 P2 P1 P2 P2

0 5 22 39 56 73 83 98 118 138 155 182 217

Figure. 4.6.6.3: Gantt chart for SMDRR in Table 4.6.6

 TQ = 79 TQ=20

P3 P4 P5 P1 P2 P2

0 5 32 64 118 197 217

Figure. 4.6.6.4: Gantt chart for MMDRR in Table 4.6.6

CASE 2: With Arrival Time

Increasing Order:

Five process P1, P2, P3, P4, P5 arriving at time 0, 2, 5, 7, 9
respectively with burst time 10, 22, 48, 70, 74 respectively of
each process shown in table 4.6.7 have been considered.
Table 4.6.8 shows the comparing result of RR, SRBRR,
SMDRR and our proposed algorithm (MMDRR).

Table 4.6.7 Data in increasing order with arrival time

Processes Arrival Time Burst Time

P1 0 10

P2 2 22

P3 5 48

P4 7 70

P5 9 74

Table 4.6.8 Comparison among RR, SRBRR, SMDRR and MMDRR

Algorithms QT AWT ATAT CS

RR 25 69.8 114.6 9

SRBRR 10, 59, 13, 2 61.6 106.4 7

SMDRR 10, 43, 11, 18, 2 77.8 122.6 10

MMDRR 10,74 49.8 94.6 4

 TQ = 25

P1 P2 P3 P4 P5 P3 P4 P5 P4 P5

0 10 32 57 82 107 130 155 180 200 224

Figure. 4.6.8.1: Gantt chart for RR in Table 4.6.8

 TQ=10 TQ=59 TQ=13 TQ=2

P1 P2 P3 P4 P5 P4 P5 P5

0 10 32 80 139 198 209 222 224

Figure. 4.6.8.2: Gantt chart for SRBRR in Table 4.6.8

TQ=10 TQ=43 TQ = 11 TQ =

 18 TQ=2

P1 P2 P3 P4 P5 P3 P4 P5 P4 P5 P5

0 10 32 75 118 161 166 177 188 204 222 224

Figure. 4.6.8.3: Gantt chart for SMDRR in Table 4.6.8

 TQ=10 TQ = 74

P1 P2 P3 P4 P5

0 10 32 80 150 224

Figure. 4.6.8.4: Gantt chart for MMDRR in Table 4.6.8

H.s.behera et al, Journal of Global Research in Computer Science, 3 (3), March 2012, 9-16

© JGRCS 2010, All Rights Reserved 14

Decreasing Order:

Five process P1, P2, P3, P4, P5 arriving at time 0, 6, 13, 21,
75 with burst time 73, 50, 23, 19, 5 respectively of each
process shown in table 4.6.9 have been considered. Table
4.6.10 shows the comparing result of RR, SRBRR, SMDRR
and our proposed algorithm (MMDRR).

Table 4.6.9 Data in decreasing order with arrival time

Processes Arrival Time Burst Time

P1 0 73

P2 6 50

P3 13 23

P4 21 19

P5 75 5

Table 4.6.10 Comparison among RR, SRBRR, SMDRR and MMDRR

Algorithms QT AWT ATAT CS

RR 25 67.8 101.8 7

SRBRR 73, 23, 23, 27 53.4 87.4 5

SMDRR 73, 23, 10, 27 71 105 8

MMDRR 73, 42, 8 53.4 87.4 5

 TQ = 25

P1 P2 P3 P4 P1 P2 P5 P1

0 25 50 73 92 117 142 147 170

Figure. 4.6.10.1: Gantt chart for RR in Table 4.6.10

TQ=73 TQ=23 TQ = 23 TQ=27

P1 P4 P5 P3 P2 P2

0 73 92 97 120 143 170

Figure. 4.6.10.2: Gantt chart for SRBRR in Table 4.6.10

TQ=73 TQ=13 TQ=10 TQ=27

P1 P4 P5 P3 P2 P4 P3 P2 P2

0 73 86 91 104 117 123 133 143 170

Figure. 4.6.10.3: Gantt chart for SMDRR in Table 4.6.10

TQ=73 TQ = 42 TQ = 8

P1 P4 P5 P3 P2 P2

0 73 92 97 120 162 170

Figure. 4.6.10.4: Gantt chart for MMDRR in Table 4.6.10

Random Order:

Five process P1, P2, P3, P4, P5 arriving at time 0, 6, 8, 9, 10
with burst time 7, 15, 90, 42, 8 respectively of each process
shown in table 4.6.11 have been considered. Table 4.6.12
shows the comparing result of RR, SRBRR, SMDRR and
our proposed algorithm (MMDRR).

Table 4.6.11 Data in random order with arrival time

Processes Arrival Time Burst Time

P1 0 7

P2 6 15

P3 8 90

P4 9 42

P5 10 8

Table 4.6.12 Comparison among RR, SRBRR, SMDRR and MMDRR

Algorithms QT AWT ATAT CS

RR 25 39.6 72 8

SRBRR 7, 15, 42, 48 19.6 52

5

SMDRR 7, 18, 36, 36 23.3 55.6 7

MMDRR 7, 76, 14 19.6 52 5

TQ = 25

P1 P2 P3 P4 P5 P3 P4 P3 P3

0 7 22 47 72 80 105 122 147 162

Figure. 4.6.12.1: Gantt chart for RR in Table 4.6.12

 TQ=7 TQ=15 TQ=42 TQ=48

P1 P2 P5 P4 P3 P3

0 7 22 30 72 114 162

Figure. 4.6.12.2: Gantt chart for SRBRR in Table 4.6.12

 TQ=7 TQ = 18 TQ = 36 TQ=36

P1 P2 P5 P4 P3 P4 P3 P3

0 7 22 30 48 66 90 126 162

Figure. 4.6.12.3: Gantt chart for SMDRR in Table 4.6.12

 TQ = 7 TQ = 76 TQ = 14

P1 P2 P5 P4 P3 P3

0 7 22 30 72 148 162

Figure. 4.6.12.4: Gantt chart for SMDRR in Table 4.6.12

Figure 4.6.13 Avg. waiting time (RR vs. SRBRR vs. SMDRR vs. MMDRR)

with arrival time= 0

BURST TIME

H.s.behera et al, Journal of Global Research in Computer Science, 3 (3), March 2012, 9-16

© JGRCS 2010, All Rights Reserved 15

Figure 4.6.14 Avg. turnaround time (RR vs. SRBRR vs. SMDRR vs.

MMDRR) with arrival time= 0

0

2

4

6

8

10

12

14

I D R

RR

SRBRR

SMDRR

MMDRR

Figure 4.6.15 Context switching (RR vs. SRBRR vs. SMDRR vs. MMDRR)

with arrival time= 0

0

10

20

30

40

50

60

70

80

I D R

RR

SRBRR

SMDRR

MMDRR

Figure 4.6.16 Avg. waiting time (RR vs. SRBRR vs. SMDRR vs. MMDRR)

with arrival time

0

20

40

60

80

100

120

140

I D R

RR

SRBRR

SMDRR

MMDRR

Figure: 4.6.17 Avg. turnaround time (RR vs. SRBRR vs. SMDRR vs.

MMDRR) with arrival time

0

1

2

3

4

5

6

7

8

9

10

I D R

RR

SRBRR

SMDRR

MMDRR

Figure: 4.6.18 Context switching (RR vs. SRBRR vs. SMDRR vs.

MMDRR) with arrival time

CONCLUSION

From the above experiments, MMDRR algorithm shows
better results than RR algorithm, SRBRR algorithm and

SMDRR algorithm in enhancing the CPU performance and

its efficiency. By using our algorithm we are getting better,

Average Waiting Time, Average Turnaround Time and

Context Switch. As we have taken the ideal cases in

calculating the TAT, WT and CS .In future we can

implement this algorithm in real time operating systems.

REFERENCES

[1]. Rakesh Mohanty, H. S. Behera, Khusbu Patwari, Monisha

Dash, “Design and Performance Evaluation of a New

Proposed Shortest Remaining Burst Round Robin (SRBRR)

Scheduling Algorithm”, In Proceedings of International

Symposium on Computer Engineering & Technology

(ISCET), Vol 17, 2010

[2]. Sourav Kumar Bhoi, Sanjaya Kumar Panda, Debashee Tarai,

“Enhancing cpu performance using subcontrary mean

C

O

N

T

E

X

T

S

W

I

T

C

H

I

N

G

BURST TIME

A

V

E

R

A

G

E

W

A

I

T

I

N

G

T

I

M

E

BURST TIME

BURST TIME

C

O

N

T

E

X

T

S

W

I

T

C

H

I

N

G

A

V

G

T

U

R

N

A

R

O

U

N

D

T

I

M

E

H.s.behera et al, Journal of Global Research in Computer Science, 3 (3), March 2012, 9-16

© JGRCS 2010, All Rights Reserved 16

dynamic round robin (smdrr) scheduling algorithm” ,JGRCS,

Volume 2, No. 12, December 2011, pp.17-21

[3]. R. J. Matarneh, “Self-Adjustment Time Quantum in Round

Robin Algorithm Depending on Burst Time of the now

Running Processes”, American Journal of Applied Sciences

6 (10), 2009, ISSN 1546-9239, pp. 1831-1837.

[4]. A. Silberschatz, P. B. Galvin and G. Gagne, “Operating

System Principles”, 7th Edn., John Wiley and Sons, 2008,

ISBN 978-81-265-0962-1.

[5]. Rami Abielmona, Scheduling Algorithmic Research,

Department of Electrical and Computer Engineering Ottawa-

Carleton Institute, 2000.

[6]. R. Mohanty, H. S. Behera, K. Patwari, M. Dash, M. L.

Prasanna, “Priority Based Dynamic Round Robin (PBDRR)

Algorithm with Intelligent Time Slice for Soft Real Time

Systems”, IJACSA, Vol. 2, No. 2, Feb 2011, pp. 46-50.

Short Bio Data for the Author

Dr. H.S.Behera is currently working as a faculty in

Dept. of Computer Science and Engineering, Veer Surendra

Sai University of Technology (VSSUT), Burla, Odisha,

India. His areas of interest include Distributed Systems,

Data Mining and Soft Computing.

Sreelipa Curtis is a Final Year B.Tech student in

Dept. of Computer Science & Engineering, Veer Surendra

Sai University of Technology (VSSUT), Burla, Odisha,

India.

Bijayalaxmi Panda is a Final Year B.Tech student in
Dept. of Computer Science & Engineering, Veer Surendra

Sai University of Technology (VSSUT), Burla, Odisha,

India.

