所有提交的EM系统将被重定向到网上投稿系统.作者被要求将文章直接提交给网上投稿系统各自的日志。

木屑对再生聚对苯二甲酸乙二醇酯(RPET)物理性能的影响

M.F.AL——Obaidi1和I.A.AL-Ajaj2
  1. 伊拉克巴格达,巴格达大学理学院物理系硕士生
  2. 伊拉克巴格达,巴格达大学理学院物理系教授
有关文章载于Pubmed谷歌学者

更多相关文章请访问国际科学、工程和技术创新研究杂志

摘要

塑料垃圾会造成严重的环境污染和垃圾填埋空间的耗尽。这项研究包括回收用聚对苯二甲酸乙二醇酯(PET)制成的透明水瓶,以制备一些建筑领域有效使用的材料。本研究包括制备第一组不同熔融温度(180°C、200°C、220°C、240°C)和混合时间(10、20、30、40、50、60 min)的再生聚对苯二甲酸乙二醇酯(RPET),混合时间为50 min,第二组填充不同木屑重量百分比(10%、20%、30%、40%、50%、60%)的RPET/S.D.,木屑重量百分比为30%W复合材料。第一套RPET和RPET/S.D.物理测试样品(热导率和吸水率)制备了W复合材料。来自RPET和RPET/S.D.的8个样品(A、B、C、D、E、F、G、H)制备W复合材料进行导热性能测试。结果表明:导热系数最低值为0.10 W/m;k为0.11 W/m。RPET和RPET/S.D.的样本E为kW复合材料at melting temperature 180°C . Eight samples( I , H , K , L , M , N , O, P ) for RPET and RPET/S.D.W composites were prepared for water absorption test . Lowest water absorption value 0.76 was observed after 92 days immersion in water for Sample I prepared from RPET at 180°C .It is concluded that RPET samples prepared at 180°C show best results for thermal conductivity and water absorption tests

关键字

再生PET,锯末,导热,吸水。

介绍

废物可以定义为使用一次后留下的不良物质的产生。固体废物可分为:城市废物、工业废物、危险废物、生物可降解废物和塑料废物。塑料垃圾是造成自然资源损失、环境污染和垃圾填埋空间枯竭的环境和社会问题的主要原因。塑料垃圾不可降解,燃烧后有毒,是现代社会面临的主要问题之一。聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)和聚对苯二甲酸乙二醇酯(PET)是最常见的塑料垃圾,因为它们是我们日常生活以及工业中最常用的商业塑料[2]。据观察,45- 50%用于机械加工的原始木材(木材)最终成为废物(锯末木材)。它可以在制造业中带来危险,特别是在其可燃性方面。PET广泛应用于食品容器、瓶子、塑料纤维、玩具、包装材料、薄膜和树脂等领域。PET是世界上要求很高的塑料之一。PET是热塑性聚酯,PET具有良好的电绝缘性能,吸水性低,硬度和强度高,尽管所有的好处但PET留在环境中。 Recycling is the best way for reduce plastic solid waste in the environment and reducing carbon footprint [4]. Many researchers reported review of the work carried in the field of recycled PET bottles . Frounchi et al , prepared blends of 20 W/W % recycled PET with virgin PETin counter-current mode at screw speed of 62 rpm and temperature profile of 235 °C to 260 °C. Practically the mechanical properties with its molecular weight slightly lower than virgin PET were reported [5] . khoramnejadian , study recycled waste PET bottle with polycarbonate ,alloy prepared in twin-screw extruder with 150 rpm at 260°C . Polycarbonate for improving the mechanical and thermal properties of recycled PET decreased during recycling process [6].Rahman et al ,Studied the prepared of composite matrix from saw dust (S.D.W) and recycled PET bottle with different ratio (w/w) mixing the saw dust and PET in a rotary type blender followed by flat press method, water absorption(WA) and thickness swelling(TS) were measured after 24 hours of immersion in water at 25, 50 and 75°C temperature. It was found that density decreased 18.3% when S.D.W content increased from 40% to 70% into the matrix. WA and TS increased when the PET content decreased in the matrix and the testing water temperature increased. Modulus of Elasticity and Modulus of Rupture were reached to maximum for the fabricated composites (2008.34 and 27.08 N/mm2, respectively) when the S.D.W content were only 40%. [7].Binici ,reported for recycling PET bottles with sand types (Silica ,River and Crushed stone sand) ,prepared by mixing sands homogeneously with molten PET waste after PET wastes had been molten at the temperature of 200°C, then thermal conductivity, water absorption capacity, bending strength and sound conductivity of samples were tested. It was shown that most of the properties of cementless mortars produced with PET wastes were strongly related with type of sand [8] .Many studies have been conducted on the recycling PET bottles and used with cement, Kuniyuki et. al [9] , Marzouk [10], Choi et. al [11] and Foti [12] have reported recycled polyethyleneterephthalate (PET) were appropriate to concrete reinforcement and improvement in ductility of the concrete. The main objectives of this study is to prepare samples and physically tested for RPET and RPET/S.D.W composites .The research aims to study the thermal conductivity and water absorption for samples .

实验的程序

材料使用。

使用由聚对苯二甲酸乙二醇酯制成的透明瓶装水,每瓶重5.55克,将瓶厚0.16毫米的上下部分切割。PET在温度下的FT-IR光谱如图(1)所示,在3429.43cm-1处为O- h的拉伸键峰,在2970 cm-1处为C- h的拉伸键峰,在1724 cm-1处为C- h的弯曲键峰,在1575.35处为C=C的拉伸键峰,在1342.46 cm-1处为C=O的拉伸键峰,在729处为CH2拉伸键峰。这与Ö Çepelioà  ullar和E. Pütün[13]报告的结果很一致。
图像
使用从当地木工和木材加工过程中获得的锯末木材,平均长度约为5- 20毫米,厚度约为1.05毫米。

制备方法

回收PET样品

为了制备RPET样品,我们收集了50个空的预先使用过的透明水PET塑料瓶,用于塑料回收的过程,可以在工程建设的不同有用领域重复使用。所有的商业不干胶标签都被从瓶子上剥下来,然后清洗和干燥。此外,每个瓶子的颈部和底部都被排除在外,没有使用。每瓶(净重5.55gm)用普通剪刀剪成小块;每块尺寸约为30*20mm,在不同的熔化温度下回收,在180°C、200°C、220°C和240°C时效果最佳。将RPET样品放入锅中,在180°C下加热10分钟,从而熔化。对于第一个样本,相同的过程重复不同的时间间隔(20、30、40、50和60分钟)。将熔化后的样品倒入容器中进行物理测试(导热系数和吸水性),静置24小时得到固体样品,然后从容器中取出,整个过程分别在200°C, 220°C和240°C的温度下重复进行。结果表明,熔炼时间为50 min时,熔炼效果最佳。

RPET/S.D.的制备W复合材料

去除木屑中残留的水分对复合材料的性能有很大的影响。为此,木屑木材在100±2°C的烤箱中干燥24小时。重复上述相同的熔化过程,除了在熔化过程结束后15分钟,每次都向锅中加入不同重量百分比(10%,20%,30%,40%,50%和60%)的木屑木材,并与内容物充分混合,以获得均匀的混合物。选择重量百分比30%的木屑木材以获得最佳条件。然后将熔化的物质倒入标准容器中,用于测量热导率和吸水性。

物理测试

1 .导热系数测试

制备热导率测试样品(A、B、C、D、E、F、G、H)如图(2)和(3)所示,样品直径88mm,厚度约5.7mm。使用Lee的圆盘法测量热导率(K),定义为单位面积上垂直于流动的热电流和单位温度梯度,使用以下公式(1)和(2)

H=m c dT/ dT (1)

k = Hb / (t1 - t2) (2)

式中H热电流,m =下盘质量(kgm),c为上下盘比热,A =试样面积(à ¿r2) (m2), r为试样半径,b为试样厚度(m)[14]。
图像

吸水试验

8个样品用于RPET和RPET/S.D.W复合材料(I,J,K,L,M,N,O,P)according to ASTM-d570are shown in figure(4) and (5) , were immersed in distilled water for 92 days.
图像
图像
图像
图像
结果表明,在熔化温度为240℃时,木屑的增重最低,由于高温影响木屑木材的性能造成损失,导致烧损。当熔化温度较低时,吸水性增加。当木屑含量增加时,木材中一些基团的-OH游离是含有较多纤维素和半纤维素的纤维,负责增加吸水率。结果可与废液PET /S.D.的Rahman使用结果进行比较W复合材料and recycling by flat-pressed wood plastic The result agree well with results Weight gain obtained 3.65% ,Found WA were measured after 24 hours of immersion in water [7].
图像

结论

RPET样品A的导热系数在180℃时为0.10 W/m。可用于RPET/ sdW复合材料the lowest result obtained at 180°C for sample E equal 0.11 W/m.k. The sample I for RPET is the best in terms of water absorption at melting temperature of 180 °C and the sample P forRPET/S.D.W composites the Lowest water absorption at melting temperature 240°C equal 1.82 . Conclusion when adding sawdust wood (S.D.W) to RPET increase the water absorption of the material because the sawdust wood containing cellulose responsible for water absorption.

参考文献

  1. 拉杰普特,G。Prasad和a.k. chopra“目前印度环境中固体废物管理的情景”,里海环境科学杂志,桂兰大学,第7卷第1页45~53,(2009)。
  2. E. Levlin,《可持续塑料废物管理——加纳阿克拉案例》TRITA-LWR M.Scthesis, ISSN 1651-064X, Michael Mensah Wienaah,(2007)。
  3. R. Maharani, T. Yutaka, T. Yajima和T. minoru“热带商业木材锯末物理性能的研究——不同磨粉机和锯末颗粒大小的影响”林业研究杂志,vol.7,no.1pp20-32,(2010)。
  4. M . ozalp《在胶合板上应用尿素甲醛胶粘剂时加入废PET瓶粉和五水硼砂的效果研究》。中国林业大学学报(自然科学版),27(3):369-374,(2011)。
  5. M. Frounchi, M. Mehrabzadeh和R . ghiaee“聚对苯二甲酸乙二醇酯饮料瓶的回收研究”伊朗聚合物杂志/第6卷第4期,1997年。
  6. S. khoramanjadian“从废旧瓶子中提高回收聚对聚双苯二乙烯(PET)的机械和热性能”,环境生物学进展,伊斯兰阿扎德大学达马万德分校环境系,伊朗达马万德,vol.5,no. 5。13 p3826 - 3829(2011)。
  7. K。S.拉赫曼,M。N Islam, M. M. Rahman, H. Dungani和A. K.halil,“锯末和回收聚对苯二甲酸乙二醇酯(PET)的平压木塑料复合材料:物理和机械性能”施普林格Plus, 2:629, 2013。
  8. H. Binici“骨料类型对无水泥砂浆的影响”欧洲工程技术杂志,第1卷第1期,2013年9月。
  9. M. Kuniyuki, O.S Fukui, T . r Suneo,“短纤维聚乙烯对苯二甲酸乙二醇酯(PET)的循环利用”,岩石力学研讨会论文集,373-378,2004.(2004)
  10. Y.O Marzouk,“水泥混凝土中塑料瓶废物的定量分析”。博士论文,皮卡第大学儒勒凡尔纳,创新技术实验室,EA 3899,亚眠,法国(2005)。
  11. Y.W Choi, d.g. Moon, Y. J Kim和M. Lachemi,“由回收的废旧聚对苯二甲酸乙二醇酯瓶子制成的含有细骨料的砂浆和混凝土的特性”建筑与建筑材料。第23卷,第8期,,页2829 - 2835(2009年8月)。
  12. D. Foti,“废瓶PET纤维加固混凝土的初步分析”,巴里建筑与建材技术大学,工程学院,土木与环境工程系,Via Orabona, 4-70125 Bari,意大利(25),(2011)。
  13. Ö Çepelioà  ullar和A。E. Pütün“日常和工业生活中两种不同类型的塑料废物的利用”Nevsehirturkey, 6月18日至21日,(2013)。
  14. A. S. Al-Gurabi“添加剂对环氧树脂力学和热性能影响的研究”博士论文,巴格达大学,2007年。
  15. 李m.c.和N。“环氧树脂的水输送”。高分子学报,18:pp(947-961),(1993)。
  16. j·g·斯贝特和n·A·兰格。“兰格化学手册(16版)”。McGraw-Hill,编,第2.807-2.758页,(2005)。
  17. D. Hugh和Young,“大学物理,第7版”,Addison Wesley,加拿大,(1992)。
  18. L. Konkol“污染水平在回收PET塑料”提交完成博士论文哲学,环境和生物技术中心,斯威本科技大学,2004年。
全球科技峰会