所有提交的电磁系统将被重定向到在线手稿提交系统。作者请直接提交文章在线手稿提交系统各自的杂志。

黄酮类化合物的特征和植物富含类黄酮

克雷格·梅洛*

营养科学系,东京大学农业、日本东京

*通讯作者:
克雷格·梅洛
营养科学学系
东京农业大学
东京,
日本。
电子邮件:
craig@mail.hosp.go.jp

收到:03 - jun - 2022手稿。jchem - 22 - 66636;编辑分配:06 - jun - 2022, PreQC没有。jchem - 22 - 66636 (PQ);综述:截止2022年6月20,QC不。jchem - 22 - 66636;修改后:截止2022年6月27日,手稿不。jchem - 22 - 66636 (R);发表:04-Jul - 2022, 2319 - 9849.11.5.003 DOI: 10.4172 /

访问更多的相关文章dota2雷竞技

关于这项研究

类黄酮是一种多酚二次代谢物存在于植物和人类饮食中经常使用。花青苷酮含有类黄酮,类似于三个类黄酮组(黄酮和黄酮醇)。生物黄酮素一词最初应用于这个群体。非酮聚羟基多酚的化学物质,更恰当地称为类黄酮,也被称为类黄酮和生物类黄酮。艾伯特szent gyorgyi和其他科学家们决定在1930年代,维生素C就不如原油黄提取物有益的橙子、柠檬或辣椒预防坏血病。他们认为提取的高度行动中的其他成分混合,它们被称为维生素p或维生素p .然而,它最终被发现的化学物质不符合维生素的标准问题,呈现标题过时了。类黄酮是主要的次生代谢产物产生的植物。类黄酮有15-carbon骨架和两个苯环上加入了一个3碳连接链。因此,它们显示为C6-C3-C6化合物。类黄酮是分为不同的组根据他们的化学结构,氧化程度,和未饱和的连接链(C3),如花青素类化合物,黄酮醇、黄烷酮类,flavan-3-ols,采用,黄酮,isoflavonoids。

类黄酮糖苷绑定和可以找到免费的糖苷配基形式的植物。黄酮和黄酮醇糖苷绑定的形式是最常见的饮食。植物富含类黄酮,用于各种各样的目的。他们最重要的花卉植物颜料的颜色,形成黄色或红色/蓝色色素在传粉者友好的花瓣。紫外线过滤、共生固氮和花色素等过程,他们在高等植物参与。化学信使,生理监管者和细胞周期抑制剂是这些分子的所有可能的功能。共生的根瘤菌是帮助感染阶段协会与豌豆等豆类,豆类,苜蓿和大豆黄酮释放的寄主植物的根。土壤中根瘤菌可以发现黄酮类化合物,导致点头因素的释放,这是公认的寄主植物,可以引起根毛变形和各种各样的细胞反应,包括根毛变形。美国农业部数据库类黄酮为黄酮类化合物提供了食物成分数据。成人平均黄酮类消费是190 mg / d NHANES研究在美国,flavan-3-ols是最大的贡献者。 According to EFSA data, the average flavonoid intake in the European Union was 140 mg/d, while there were significant variances between nations. Flavan-3-ols were the most often eaten flavonoids in the EU and the US (80% for adults in the US), mostly from tea or cocoa in chocolate, whereas other flavonoids were ingested in much smaller amounts. Flavonoids are poorly absorbed in the human body (less than 5%), converted swiftly into smaller fragments with uncertain characteristics, and eliminated quickly. Flavonoids have low antioxidant action in the body and the rise in blood antioxidant capacity seen after eating flavonoid rich meals is due to the generation of uric acid generated by flavonoid depolymerization and excretion, not flavonoids. The overall metabolism of dietary flavonoids is heavily influenced by microbial metabolism. The impact of flavonoid consumption on the microbiome of the human gut is unknown. Light color spectrums at both high and low energy radiations stimulate flavonoid production in plants. Phytochrome accepts low energy radiations, while carotenoids, flavins and cryptochromes, in addition to phytochromes, accept high-energy radiations. In Amaranthus, barley, maize, sorghum and turnip, the photomorphogenic process of phytochrome mediated flavonoid production has been documented. Flavonoid synthesis is aided by red light. Several recent studies have shown that genetically modified microbes can produce flavonoid compounds efficiently. SynBio4Flav is a project that aims to provide a cost-effective alternative to current flavonoid production by breaking down complex biosynthetic pathways into standardized specific parts that can then be transferred to engineered microorganisms within synthetic microbial consortia to promote flavonoid assembly through distributed catalysis.