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ABSTRACT 

In this work, we consider a particle moving on a two-dimensional non-

commutative plane immersed in a constant magnetic field. The non-

commutativity of spatial coordinates, conjugate momentum, and spin 

variables are supposed to satisfy a "non-standard" Heisenberg algebra. The 

parameter 𝜃 that characterizes the non-commutativity here is not constant 

and is called "non-commutativity of spin". Using the Pauli equation and 

perturbation theory, the non-commutativity parameter can be shown, after 

considering the degeneracy of energy levels, to be bounded by  𝜃 ≪ 10−20 cm. 

 

Keywords: Pauli equation; Spin non-commutativity; Non-commutative 
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INTRODUCTION 

Theories in non-commutative space have recently attracted a great deal of interest [1]. This interest has its origin in 

quantum gravitation, string theory, black holes, cosmology, and even the very conceptual basis of field theory [2-13]. 

Non-Commutative (NC) spaces are characterized by position operators  �̂�𝜇 satisfying the relationship. 

[�̂�𝜇 , �̂�𝜈] = 𝑖𝜃𝜇𝜈,… (1) 

 

Where 𝜃𝜇𝜈 is a constant antisymmetric matrix of dimension (length)2 and the hatted quantities refer to position 

operators in NC space. The field theory formulated on these spaces (i.e., non-commutative field theory) is described 

by field operators, which are functions of �̂�𝜇. In NC field theories the punctual field product is exchanged by the 

Moyal field’s product, 

𝜙1(𝑥) ∗ 𝜙2(𝑥) = lim
𝑦→𝑥

𝑒
𝑖

2
𝜃𝜇𝜈

𝜕

𝜕𝑦𝜇
𝜕

𝜕𝑥𝜇𝜙1(𝑦)𝜙2(𝑥)  ,….. (2) 

 

Where 𝜙1(𝑥) and 𝜙2(𝑥) are two arbitrary and infinitely differentiable functions, thus giving rise to nonlocal theories. 

From the nonlocality inherent to Eq. (1) several peculiarities appear from non-commutative theories. One of these 

properties is the so-called ultraviolet-infrared (UV-IR) mixture, which consists of infrared singularities arising from 

ultraviolet divergences, even in theories with no fields of zero mass [14]. Except for some supersymmetric theories 

[15,16], UV-IR mixture destroys the usual disturbing schemes. Another peculiar aspect resulting from nonlocality is 

unitarity and causality when 𝜃0𝑖 ≠ 0 [17].  

In all these situations, we have canonical non-commutativity [18]. A great deal of literature has been devoted to 

exploring the consequences of this type of non-commutativity in several theoretical fields and quantum-mechanical 

models [19-21]. 

We examine here a new type of non-commutativity, namely, one that depends on spin [22,23]. This type of 

consideration for non-commutativity encourages the construction of new models in quantum mechanics [24-26]. New 

research paths in this sense can be explored (for example, nonconventional superconductivity [27] and a geometric 

picture of quantum mechanics [28]. Discusses various questions about the physical meaning and mathematical 

formulation of spin-dependent non-commutativity [29]. 

More recently, the effects of the non-commutativity of the space-time with mixed spatial and spin degrees of 

freedom in a relativistic situation [30] allows us to explore new routes to Quantum Gravity Theory. In this regard, it 

leads to the understanding that the space-time has an underlying structure on small distance scale - or high energy 

scale - leading to some of the long-standing research in recent years. 

The non-commutativity of the spatial coordinates 𝜃, the conjugate moment  �̂�𝑖
, and the spin variables, �̂�𝑖  are 

supposed to satisfy the "nonstandard" Heisenberg algebra. 

[�̂�𝑖 , �̂�𝑗] = 𝑖𝜃2𝜖𝑖𝑗𝑘 �̂�𝑘 , 

[�̂�𝑖, �̂�𝑗] = 𝑖𝛿𝑗
𝑖,      [�̂�𝑖 , �̂�𝑗] = 0 

permits unrestricted use, 

distribution, and reproduction 

in any medium, provided the 

original author and source are 

credited. 
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[�̂�𝑖 , �̂�𝑗] = 𝑖𝜃𝜖𝑖𝑗𝑘 �̂�𝑘,                  [�̂�𝑖 , �̂�𝑗] = 𝑖𝜖𝑖𝑗𝑘 �̂�𝑘….. (3) 

Where 𝜃 is the non-commutative parameter that we call non-commutativity spin dependent? The procedure we 

adopt consists of relating the position operators �̂�𝑖, which satisfies Eq. (3), to the commutative operator 𝑥𝑖 . this 

transformation, usually called the Bopp shift, is respectively given for coordinates and momenta by 

 

�̂�𝑖 = 𝑥𝑖1 + 𝜃�̂�𝑖 ,….. (4) 

Where, in terms of Pauli matrices, �̂�𝑖 =
1

2
𝜎𝑖 is the spin operator. 

To understand the implications of this new type of non-commutativity, we use the Pauli equation in what follows to 

study its perturbative effect in a nonrelativistic situation. 

 

METHODOLOGY 

 

The Pauli equation  

We consider the movement of a particle of charge e in x-y plane subject to a magnetic field �⃗�   perpendicular to the 

plane (i.e., in the z direction). The Pauli-Hamiltonian is given by 

𝐻 =
(𝑝−𝑒𝐴 )

2

2𝑚
− 𝜇 ⋅ �⃗� ,….. (5) 

So that 𝜇 = 𝑔
𝑒

2𝑚
𝑆  is the magnetic moment, 𝑔 is the gyromagnetic vector, 𝑆  is the spin, and the components of the 

electromagnetic potential are 

𝐴1 = 𝐴3 = 0    ;    𝐴2 = 𝐵�̂� = 𝐵(𝑥1 + 𝜃𝑆1) = 𝐵(𝑥1 + 𝜃𝜎1/2). ….. (6) 

Replacing the above components in Eq. (5) leads to the following eigenvalue equation 

�̂�Ψ = �̂�0Ψ + 𝜃 (
𝑒2𝐵2𝑥1𝜎1

2𝑚
−

𝑝2𝑒𝐵𝜎1

2𝑚
) + 𝜃2 𝑒2𝐵2

8𝑚
Ψ = 𝐸Ψ. …… (7) 

The term proportional to 𝜃2 give us a constant displacement across all the spectrum and henceforth is omitted. For 

the calculation of the undisturbed solution (𝜃 = 0), the operator 

�̂�0Ψ =
𝑝1

2+𝑝2
2+𝑝3

2

2𝑚
+

𝑒2𝐵2𝑥1
2

2𝑚
−

𝑝2𝑒𝐵𝑥1

𝑚
− 𝜇 ⋅ �⃗�  …. (8) 

Has no explicit y and z coordinates. Therefore, the operators �̂�2 and �̂�3 commute with �̂�0, that is, the components y 

and z of the momentum are conserved. We thus adopt the following solution: 

Ψ(𝑥1, 𝑠) = 𝐶𝑒𝑖(𝑥2𝑝2+𝑥3𝑝3)𝜓(𝑥1, 𝑠), …. (9) 

where 𝐶 is a normalization constant. Upon substituting this solution into our expression (7), we get 

ℎ̂𝜓 = [
𝑝1

2

2𝑚
+

𝑒2𝐵2(𝑥1−𝑥0)2

2𝑚
− 𝜇 ⋅ �⃗� + 𝜃 (

𝑒2𝐵2𝑥1𝜎1

2𝑚
−

𝑝2𝑒𝐵𝜎1

2𝑚
)]𝜓 = �̅�𝜓 ….. (10) 

where �̅� = 𝐸 −
𝑝3

2

2𝑚
 and 𝑥0 =

𝑝2
|𝑒|𝐵

, which can be solved perturbative by means of the equation 

ℎ̂𝜓 = (ℎ̂0 + ℎ̂𝑖𝑛𝑡)𝜓,      ℎ̂𝑖𝑛𝑡 = 𝜃 (
𝑒2𝐵2𝑥1𝜎1

2𝑚
−

𝑝2𝑒𝐵𝜎1

2𝑚
) , ….. (11) 

where ℎ̂0 is the Hamiltonian of the Landau problem: 

ℎ̂0𝜓0 = �̅�𝜓0,      ℎ̂0 =
𝑝1

2

2𝑚
+

𝑒2𝐵2(𝑥1−𝑥0)2

2𝑚
− 𝜇 ⋅ �⃗� . ….. (12) 

The solutions  𝜓𝑛(𝑥1, 𝑠) are separable as follows 

𝜓𝑛(𝑥1, 𝑠)  = 𝜓0𝑛(𝑥1)𝜒𝑠 …. (13) 
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So that 𝑆3𝜒𝑠 = 𝑠𝜒𝑠 and 

𝜓0𝑛 =
1

√2𝑛.𝑛! 
(
𝑒𝐵

𝜋
)

1

4
𝑒−𝜉2 2⁄ 𝐻𝑛(𝜉), …. (14) 

where 𝐻𝑛(𝜉) represents the polynomials of Hermite, 2 𝜉 = √𝑒𝐵 (𝑥 −
𝑝2

|𝑒|𝐵
). 

 

The eigenvalues are given by 

1 𝜒𝑠 Describes the spin projection along the magnetic field. 

 

2 From ∫ 𝛹𝑥,𝑠
∗ 𝛹𝑥,𝑠 = |𝐶|2𝑑𝜉

𝑑𝑥

𝑑𝜉
𝜓∗(𝑥1, 𝑠)𝜓(𝑥1, 𝑠) =

|𝐶|2

√𝑒𝐵
∫ 𝑑𝜉𝑒−𝜉2

𝐻𝑛
2(𝜉) = 1, we have |𝐶|2 = √

𝑒𝐵

𝜋
.

1

2𝑛.𝑛!
. 

�̅�0𝑛,𝑠 =
|𝑒|𝐵

𝑚
(𝑛 +

1

2
) −

𝑔𝑒𝑠

2𝑚
𝐵. …. (15) 

In particular, to an electron, neglecting radioactive corrections,  𝑔=2,   𝑒 = −|𝑒|,   and the result    �̅�0 =

|𝑒|𝐵

𝑚
(𝑛 +

1

2
+ 𝑠) shows that the energy level for a given 𝑛 and 𝑠 =

1

2  
 is in fact degenerate with the level 𝑛 +

1 and 𝑠 = −1/2. We thus analyze the conditions given in the following sections. 

 

Nondegenerate energy levels (𝑔 ≠ 2) 

In this situation we use nondegenerate perturbation theory to compute the dominant correction to �̅�0. 

However, the first-order correction is 

 

�̅�0,𝑛𝑠
(1)

= ∫𝑑𝑥(𝜓0,𝑛𝑠
† ℎ̂𝑖𝑛𝑡𝜓0,𝑛𝑠) = 0 ….. (16) 

Since 𝜒𝑠
†𝜎1𝜒𝑠 = 0 (𝑠 = 𝑠′). Therefore, we must examine the second-order perturbation formula 

'

'

'

2

(2)
int(k,s ;n,s)

0,n (0) (0), ,
, ,

ˆ

s k s n s
n s k s

h
E

E E









….. (17) 

So, for 𝑠′ ≠ 𝑠, we get after some calculations 

ℎ̂𝑖𝑛𝑡(𝑘,𝑠′; 𝑛,𝑠) = 𝜃
1

√2𝑘𝑘!

1

√2𝑛𝑛!

 (𝑒𝐵)3/2

2𝑚
(√

𝑛+1

2
𝛿𝑘,𝑛+1 + √

𝑛

2
𝛿𝑘,𝑛−1) ….. (18) 

Where  ℎ̂
𝑖𝑛𝑡(𝑛,𝑠′; 𝑛,𝑠)

= ℎ̂𝑖𝑛𝑡(𝑘,𝑠 ; 𝑛,𝑠) = 0. In this way, the array elements nullify to 𝑘 = 𝑛 and 𝑠′ ≠ 𝑠  as well as to 𝑘 ≠ 𝑛 

and 𝑠′ = 𝑠. Hence, the second-order correction for energy is 

�̅�𝑛𝑠
(2)

= ∑
|�̂�𝑘,𝑠′; 𝑛,𝑠|

2

𝐸𝑛,𝑠
(0)

− 𝐸
𝑘,𝑠′
(0)

= 𝜃2
 (𝑒𝐵)3

2𝑛+1(𝑛!).𝑚. 2𝜋
×

𝑘≠𝑛 ; 𝑠′≠𝑠

 

× [−
1

2(2|𝑒|𝐵+𝑔𝑒𝐵(𝑠−𝑠′))
+

2𝑛2

2|𝑒|𝐵−𝑔𝑒𝐵(𝑠−𝑠′)
]. ….. (19) 

 

Degenerate energy levels fixed by the Hamiltonian ℎ̂0 (g = 2) 

In this situation, we have to solve the secular equation toℎ̂𝑖𝑛𝑡. The solution is simple since ℎ̂𝑖𝑛𝑡(𝑘,𝑠;𝑛𝑠) = 0 and 

 

ℎ̂𝑖𝑛𝑡(𝑛+1,−1/2 ; 𝑛,1/2) = ℎ̂𝑖𝑛𝑡(𝑛,1/2 ; 𝑛+1,−1/2) = 𝜃𝑉. …. (20) 
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It follows that the degeneracy is broken by the first-order correction. The original level splits into 

�̅�0,𝑛𝑠
(±)

= �̅�0,𝑛𝑠 ± 𝜃|𝑉|, … (21) 

Where �̅�0,𝑛𝑠 is given by Eq. (17) and 

|𝑉| =
1

√2𝑛𝑛!

1

√2𝑛+1(𝑛+1)!

 (𝑒𝐵)3/2

2𝑚
√

𝑛+1

2
. … (22) 

Equations (21) and (22) allow us to estimate the value of the non-commutative parameter θ. Since, 

𝐸 = 𝐸0 + 𝛥𝐸0 = 𝐸0 (1 +
𝛥𝐸0

𝐸0
) ∼ 𝐸0 (1 + 𝜃(𝑒𝐵)1/2), …. (23) 

And considering the strength of the magnetic field typical of the nucleus of a neutron star [31], of the order of 1013, 

we have: 

𝜃 ≪ 10−20cm …. (24) 

In which we assume the accuracy of the results of the quantum Hall effect of the order of atomic measurements. In 

addition, the two linearly independent zero-order wave functions suitable for perturbative calculations are 

1

√2
[𝜓0(𝑛,1/2) ± 𝜓0(𝑛+1,−1/2)].  …. (25) 

 

RESULTS AND DISCUSSION 

In the present work, we study non-commutative quantum mechanics and consider in particular spin-non-

commutative effects. Using the Pauli equation, corrections for the energy were calculated up to second order for a 

particle in a constant magnetic field. The unperturbed Hamiltonian shows a continuous degeneracy and, in the case 

of the electron (𝑔 = 2), a discrete degeneracy. The continuous degeneracy persists and the discrete degeneracy is 

modified by the disturbance.  

3 1G = 104 T, and, in natural units, 𝐵 = 1 eV2 = 1,44.10−3 T. 

All these studies do not rule out the possibility of their application to relativistic situations. In the relativistic 

problem, with 𝜃 = 0, the same degeneracy occurs as in the nonrelativistic problem and can be either continuous or 

discrete. We consider the strength of the magnetic field B of the order of 1013G. The non-commutativity parameter 

can be shown to be bounded as 𝜃 ≪ 10−20cm.  

In recent years, several studies have been devoted to Non-Commutative (NC) theories and these represent an 

intense effort to understand the properties of space-time at very small length scales. 

The idea of taking space-time coordinates to be noncommutative have attracted great interest through the 

multiplicity of its applications. In these (NC) spaces, much of the literature usually employs the most diverse tools 

and areas, such as: “path integrals”, “1/N expansion”, “quantum field theory” [1, 32-34], etc.   

In the present work, in noncommutative quantum mechanics we apply “perturbation theory”, a systematic 

procedure for obtaining approximate solutions to a perturbed Hamiltonian, and consider in particular spin-

noncommutative effects. Here, the NC theta parameter is used as the parameter of the perturbation on which the 

expansion is done. 

Using the Pauli equation, we see that the Hamiltonian has its 𝜽 dependence on the second component of the 

vector potential. From the eigenvalue equation we obtain the free and interaction Hamiltonians. The solutions of 

eigenvalue equation to the unperturbed Hamiltonian are expressed in terms of Hermite polynomials and the 

normalization constant have been calculated. 
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We start with the condition that(𝑔 ≠ 2), i.e., to the nondegenerate perturbation. In this case corrections for the 

energy were calculated up to second order for a particle in a constant magnetic field. 

Finally, we consider the situation where the energy levels are degenerate (𝑔 = 2). We solve the secular equation to 

the perturbed Hamiltonian and we observe that the degeneracy is broken by the first-order correction. The original 

level splits into two values for the energy. 

Our next step was to consider the strength of the magnetic field typical of the nucleus of a neutron star. The 

noncommutativity parameter can be shown to be bounded as 𝜃 ≪ 10−20cm. It is important to note we work in 

natural units (ℏ = 𝒄 = 1) which in this case 𝐵 = 1 eV2 ∼  1,44.10−3 T. 

We can find in literature other approaches based in noncommutative quantum mechanics such that proposed by 

Gamboa et al. In the context of Landau problem [35]. There, to the magnetic field about 12 T the result obtained was 

𝜃 = 0.22 × 10−11cm2. Later, in Bose-Einstein condensation theory context, a similar result was presented [36]. 

Nowadays there are several bounds for 𝜃 [37-39]. New limit for the noncommutative spacetime parameter can also 

be found. 

 

Appendix: The Moyal product of two fields 

We now use the expression for 𝜙(𝑥) in terms of the trace to build the Moyal product of the classical functions 

𝜙1 and 𝜙2 corresponding to the product of operators 𝜙1and𝜙2: 

 𝜙1(𝑥) ∗ 𝜙2(𝑥) = ∫
𝑑𝑘

(2𝜋)𝑑
𝑒−𝑖𝑘𝑥𝑇𝑟 [Φ1Φ2𝑇

†(𝑘)] …..(26) 

Since 

𝑇𝑟 [Φ1Φ2𝑇
†(𝑘)] = 𝑇𝑟 [∫

𝑑𝑘1

(2𝜋)𝑑

𝑑𝑘2

(2𝜋)𝑑
𝑇(𝑘1)𝑇(𝑘2) Φ̃1(𝑘1)Φ̃2(𝑘2)𝑇

†(𝑘)] = 

 = ∫
𝑑𝑘1

(2𝜋)𝑑
∫

𝑑𝑘2

(2𝜋)𝑑
Φ̃1(𝑘1)Φ̃2(𝑘2)𝑇𝑟 [𝑇(𝑘1)𝑇(𝑘2)𝑇

†(𝑘)], ….(27) 

Where 

𝑇𝑟 [𝑇(𝑘1)𝑇(𝑘2)𝑇
†(𝑘)] = 𝑒−

𝑖

2
𝑘1

𝜇
Θ𝜇𝜈𝑘2

𝜈

𝑇𝑟[𝑇(𝑘1 + 𝑘2)𝑇(−𝑘)] =  

 = 𝑒−
𝑖

2
𝑘1

𝜇
Θ𝜇𝜈𝑘2

𝜈

𝑒
𝑖

2
(𝑘1+𝑘2)𝜇Θ𝜇𝜈𝑘𝜈

(2𝜋)𝑑Π𝜇𝛿(𝑘1 + 𝑘2 − 𝑘)𝜇 . ….(28)  

Replacing Eq. (28) into Eq. (27), Eq. (26) becomes 

 𝜙1(𝑥) ∗ 𝜙2(𝑥) = ∫
𝑑𝑘1

(2𝜋)𝑑

𝑑𝑘2

(2𝜋)𝑑
Φ̃1(𝑘1)Φ̃2(𝑘2)𝑒

−𝑖(𝑘1+𝑘2)𝜇𝑥𝜇
×  

 × 𝑒−
𝑖

2
𝑘1

𝜇
Θ𝜇𝜈𝑘2

𝜈

𝑒
𝑖

2
(𝑘1+𝑘2)𝜇Θ𝜇𝜈(𝑘1+𝑘2)𝜈

. ….(29)  

However, 

 exp  [
𝑖

2
(𝑘1 + 𝑘2)

𝜇Θ𝜇𝜈(𝑘1 + 𝑘2)
𝜈] = 1, ….(30)  

So, 

 𝜙1(𝑥) ∗ 𝜙2(𝑥) = ∫
𝑑𝑘1

(2𝜋)𝑑

𝑑𝑘2

(2𝜋)𝑑
Φ̃1(𝑘1)Φ̃2(𝑘2)𝑒

−𝑖(𝑘1+𝑘2)𝜇𝑥𝜇
𝑒−

𝑖

2
𝑘1

𝜇
Θ𝜇𝜈𝑘2

𝜈

=  

 
= lim

𝑦→𝑥
∫

𝑑𝑑𝑘1

(2𝜋)𝑑

𝑑𝑑𝑘2

(2𝜋)𝑑
Φ̃1(𝑘1)Φ̃2(𝑘2)𝑒

−𝑖𝑘1
𝜇
𝑥𝜇𝑒−𝑖𝑘2

𝜇
𝑦𝜇 × 

 

× (1 −
𝑖

2
𝑘1

𝜇
Θ𝜇𝜈𝑘2

𝜈 +
1

2
(
𝑖

2
)
2

𝑘1
𝜇1𝑘1

𝜇2Θ𝜇1𝜈1
Θ𝜇2𝜈2

𝑘2
𝜈1𝑘2

𝜈2+ . . . ) = 
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= lim
𝑦→𝑥

∫
𝑑𝑑𝑘1

(2𝜋)𝑑

𝑑𝑑𝑘2

(2𝜋)𝑑
Φ̃1(𝑘1)Φ̃2(𝑘2)𝑒

−𝑖𝑘1
𝜇
𝑥𝜇𝑒−𝑖𝑘2

𝜇
𝑦𝜇 ×  

× (1 +
𝑖

2
(−𝑖𝑘1

𝜇
)Θ𝜇𝜈(−𝑖𝑘2

𝜈) +  

+
1

2
(
𝑖

2
)
2

(−𝑖𝑘1
𝜇1)(−𝑖𝑘1

𝜇2)Θ𝜇1𝜈1
Θ𝜇2𝜈2

(−𝑖𝑘2
𝜈1)(−𝑖𝑘2

𝜈2) + … ) = 

= lim
𝑦→𝑥

∫
𝑑𝑑𝑘1

(2𝜋)𝑑

𝑑𝑑𝑘2

(2𝜋)𝑑
Φ̃1(𝑘1)Φ̃2(𝑘2)𝑒

−𝑖𝑘1
𝜇
𝑥𝜇𝑒−𝑖𝑘2

𝜇
𝑦𝜇 × 

× (1 +
𝑖

2

𝜕

𝜕𝑥𝜇

Θ𝜇𝜈

𝜕

𝜕𝑦𝜈

+
1

2
(
𝑖

2
)
2 𝜕

𝜕𝑥𝜇1

𝜕

𝜕𝑥𝜇2

Θ𝜇1𝜇1
Θ𝜇2𝜈2

𝜕

𝜕𝑦𝜈1

𝜕

𝜕𝑦𝜈2

+ …) = 

= lim
𝑦→𝑥

∫
𝑑𝑑𝑘1

(2𝜋)𝑑

𝑑𝑑𝑘2

(2𝜋)𝑑
Φ̃1(𝑘1)Φ̃2(𝑘2)𝑒

−𝑖𝑘1
𝜇
𝑥𝜇𝑒−𝑖𝑘2

𝜇
𝑦𝜇𝑒

𝑖

2
 

𝜕

𝜕𝑥𝜇
 Θ𝜇𝜈 

𝜕

𝜕𝑦𝜈 = 

 
= lim

𝑦→𝑥
𝑒

𝑖

2
 

𝜕

𝜕𝑥𝜇
Θ𝜇𝜈

𝜕

𝜕𝑦𝜈∫
𝑑𝑑𝑘1

(2𝜋)𝑑
𝑒−𝑖𝑘1

𝜇
𝑥𝜇Φ̃1(𝑘1)∫

𝑑𝑑𝑘2

(2𝜋)𝑑
𝑒−𝑖𝑘2

𝜇
𝑦𝜇Φ̃2(𝑘2). ….(31)  

Thus, we have the following expressions for the Moyal product of two fields: 

 
𝜙1(𝑥) ∗ 𝜙2(𝑥) = lim

𝑦→𝑥
exp [

𝑖

2

𝜕

𝜕𝑥𝜇

Θ𝜇𝜈

𝜕

𝜕𝑦𝜈

] 𝜙1(𝑥)𝜙2(𝑥)  =  

  = 𝜙1(𝑥) exp [
𝑖

2
�⃖�𝜇Θ𝜇𝜈𝜕 𝜈] 𝜙2(𝑥). ….(32)  

 

 

   

CONCLUSION 

The study of a non-commutative space-time has grown very fast in recent years. Several attempts have been made 

to search for possible effects of non-commutativity in different frameworks. In particular, experiments investigating 

the spin effects of cold atoms in gases. Non-commutative quantum mechanics is currently contributing, with an 

important portion of work on non-commutativity, in different forms of study. It permits us to examine phenomena 

that occur at very small scales and to explore the physical consequences in a simpler situation. Finally, in face of 

the tiny non-commutativity contributions, we hope that the Tonomura-type experiments can probe the spin non-

commutativity in the near future. All these studies do not rule out the possibility of their application to relativistic 

situations. In the relativistic problem, with 𝜃 = 0, the same degeneracy occurs as in the nonrelativistic problem and 

can be either continuous or discrete. 
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