conferenceseries.com

10th International Conference on

Emerging Materials and Nanotechnology

July 27-29, 2017 Vancouver, Canada

Enhanced photocatalytic activity of La³⁺ and Se⁴⁺ co-doped bismuth ferrites nanostructures

Syed Irfan

Tsinghua University Beijing, China

Photocatalysis is attracting huge interest by addressing current energy and environmental issues by converting solar light into chemical energy. For this purpose, we investigated the effect of La^{3+} and Se^{4+} co-doping on photocatalytic activity of BiFeO₃. The BiFeO₃ and Bi_{0.92}La_{0.08}FeO₃ nanoparticles containing different Se⁴⁺ doping contents (BiFe_(1-x)Se_xO₃, x= 0.0, 0.02, 0.05) and (Bi_{0.92}La_{0.08}Fe_(1-x)Se_xO₃, x = 0.0, 0.02, 0.05, 0.075, 0.1), respectively, were synthesized with double solvent sol-gel route. The co-doped nanoparticles were characterized by X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), and UV-Vis diffuse reflectance spectroscopy (DRS), and their photocatalytic activity was studied by photocatalytic degradation of Congo red (CR) in aqueous solution under different wavelengths of light illumination. The band-gap of the pure BiFeO₃ was significantly decreased from 2.06 eV to 1.94 eV. It was found that the La³⁺ and Se⁴⁺ co-doping significantly affected the photocatalytic performance of pure BiFeO₃. Moreover, with the increment of Se⁴⁺ doping into Bi_{0.92}La_{0.08}FeO₃ up to an optimal value, the photocatalytic activity was maximized. In order to study the photosensitization process, photo-degradation of colorless organic compound (acetophenone) was also observed. On the basis of these experimental results, the enhanced photocatalytic activities of La³⁺ and Se⁴⁺ co-doping could be attributed to the increased optical absorption, the efficient separation and migration of photo-generated charge carriers with the decreased recombination of electron-hole resulting from co-doping effect. The possible photocatalytic mechanism of La³⁺ and Se⁴⁺ co-doped BiFeO₃ was critically discussed

irfansyed715@gmail.com