MATERIALS SCIENCE AND ENGINEERING

&

3rd International Conference on

APPLIED CRYSTALLOGRAPHY November 07-08, 2018 | Atlanta, USA

Synthetic phase and morphology control over colloidal nickel sulfide nanocrystals

Gozde Barim University of Southern California, USA

B Distinct phases of the binary nickel sulfide system have potential to be used as bifunctional catalysts for water splitting, cathode materials for lithium-ion batteries, absorber layers for solar cells, hydrodesulfurization catalysts, or supercapacitors. However, the complicated nature of the Ni–S phase diagram makes the solution synthesis of phase-pure colloidal nanocrystals challenging. In this presentation, the phase- and morphology-controlled solution synthesis of colloidal nickel sulfide nanocrystals is demonstrated. Nanocrystals of Ni₃S₄, α -NiS, β -NiS, Ni₉S₈ and Ni₃S₂ can be independently prepared by tuning key synthetic parameters of S:Ni precursor ratio, capping ligand, reaction time and temperature. S:Ni ratio and temperature influences the phase of nanocrystals, a phase transformation from cubic Ni₃S₄ to hexagonal α -NiS and then rhombohedral β -NiS with increasing S:Ni ratios and temperature is observed. 1-dodecanethiol is shown as an important phase and shape-directing agent. In the presence of 1-dodecanethiol, Ni₉S₈ nanocrystals with quasi-spherical morphology or Ni₃S₂ nanoparticles with a multi-pod like morphology can be obtained by using various disubstituted thioureas are sulfur precursors.

barim@usc.edu

Notes: