4th International Conference and Expo on

Ceramics and Composite Materials

May 14-15, 2018 | Rome, Italy

Development and characterization of Hydroxyapatite-Alumina- Zrirconia biocomposites for orthopedic implants

Said Laasri¹, Mohamed Es-Saddik², Mohamed Taha³, Abdelwahed Hajjaji⁴, Abdelaziz Laghzizil⁵ and E. K. Hlil⁶ ^{1,4}Chouaib-Doukkali University, Morocco ^{2,3}Ibn Zohr University, Morocco ⁵Mohammed V University, Rabat Morocco ⁶CNRS, Université Grenoble Alpes, France

The development of new biomaterials with enhanced mechanical and physical properties and biocompatibility has become a major challenge in biomaterials community. In this case, biomaterials play a very important role as source for needed materials to satisfy human requirements. Among different categories of biomaterials, hydroxyapatite HAP is responsible for bio-mineralization, osteoinduction, and osteo-integration and has good biocompatibility and bioactivity. Because pure HAP shows poor mechanical properties, low strength (<120MPa) and low fracture toughness, different inorganic additives such as zirconia and alumina are introduced in order to improve the properties of hydroxyapatite. In this study, various HAP-ZrO₂ and HAP-Al₂O₃ biocomposite powders have been synthesized using a modified precipitation method under ultrasonic irradiation and haracterized by numerous techniques. The in situ growth of ZrO_2 and Al_2O_3 followed by thermal treatment allowed for the formation of nanocomposites homogeneously dispersed in the hydroxyapatite phase. The benefit of this association favors the dispersion of oxide phase in the apatite structure and therefore enhances their intrinsic mechanical properties. High oxide loadings within the HAP structure can even lead to superior mechanical efficient compared to the HAP alone. Considering these results, we have prepared here HAP-ZrO₂ and HAP-Al₂O₃ nanocomposites and evaluated their mechanical properties towards the addition of oxide phase.

laasrisaid@yahoo.fr