11th International Conference on

ADVANCED MATERIALS & PROCESSING

September 07-08, 2017 | Edinburgh, Scotland

Luminescence of morphologically-controlled calcium silicon nitride particles through combined techniques of ultrasonic spray pyrolysis and carbothermal reduction/nitridation

S. Ono¹, H. Kuwahara², H. Kuroe² and K. Itatani¹

¹Department of Materials and Life Sciences, Sophia University, Japan ²Department of Engineering and Applied Sciences, Sophia University, Japan

The morphologically-controlled preparations of Eu^{2+} -doped calcium silicon nitride (Ca, $EuxSi_sN_s$: x = 0.05) particles, i.e., the spherical and columnar particles, were conducted by combined techniques of ultrasonic spray pyrolysis and carbothermal reduction/ nitridation. Relating to the ultrasonic spray pyrolysis, the precursor oxides for Ca, EuxSi N, particles were prepared by this technique at 600°C in air, using Ca(NO₃),/Eu(NO₃), solution (total concentration: 2.86×10^{-2} mol·dm⁻³) with suspended Si₃N, particles. The spray-pyrolyzed powder was further mixed with carbon, and carbothermally reduced in N₂ atmosphere. The spherical and columnar Ca₁₉₅Eu₀₀₅Si₅N₈ particles could be prepared by controlling the heating rate and temperature for carbothermal reduction/ nitridation. The spherical $Ca_{1.95}Eu_{0.05}Si_5N_8$ particles could be obtained when the spray-pyrolyzed powder (or precursor oxides) was heated to 1000°C at the rate of 30°C•min⁻¹and then to 1400°C for 2 h at the rate of 10°C•min⁻¹. On the other hand, the columnar $Ca_{1.95}Eu_{0.05}Si_5N_8$ particles could be obtained when the spray-pyrolyzed powder was heated to 1100°C at the rate of 30°C•min⁻¹ and then to 1500°C for 2 h at the rate of 10°C•min⁻¹. The morphological control was conducted by the kinds of liquid phases formed during the heating process. The morphological control of Ca_{1.95}Eu_{0.05}Si₅N₈ particles could be achieved by the nitridation of spherical and columnar particles formed at 1000°C or 1100°C. The emission peaks of spherical and columnar Ca_{1.95}Eu_{0.05}Si₅N₈ particles appeared at 622 nm and 618 nm, respectively, under the excitation at 375 nm. Overall, the spherical and columnar Ca_{1 as}Eu₀₀₅Si₂N_e particles could be formed by controlling the heating rate and temperatures for the carbothermal reduction/nitridation of spray pyrolyzed oxide powders. The spherical and columnar particles emitted the lights with the peak wavelength at 622 and 618 nm under excitation at 375 nm.

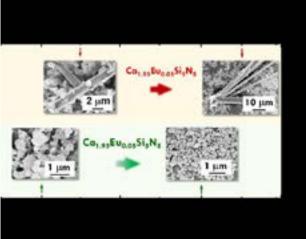


Figure1: Morphological changes of particles with temperature

Biography

Satoshi Ono is a student of Sophia graduate school. His research interest is preparation and characterization of Si₃N₄-containing nitride ceramics.

satoshi0517@eagle.sophia.ac.jp

Notes: